The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investig...The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investigated. Eighty male Sprague-Dawley rats were randomly allocated into control group (n=10), acute hypoxic group (n=10), and chronic hypoxic groups (n=60). The chronic hypoxic groups were randomly divided into 6 subgroups (n=10 each) according to the chronic hypoxic periods. The rats in the control group were kept in room air and those in acute hypoxic group in hypoxia envi- ronmental chamber for 8 h. The rats in chronic hypoxic subgroups were kept in hypoxia environmental chamber for 8 h per day for 5, 10, 15, 20, 25, and 30 days, respectively. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), and the current of voltage-gated potas- sium channel (IK) in PASMCs were measured. Results showed that both acute and chronic hypoxia could decrease the IK in PASMCs of rats and the I-V relationship downward shifted to the right. And the peak Ir density at +60mV decreased with prolongation of hypoxia exposure. No significant difference was noted in the density oflK (at +60 mV) and I-V relationship between control group and chronic hy- poxic subgroup exposed to hypoxia for 5 days (P〉0.05), but there was a significant difference between control group and chronic hypoxic subgroup exposed to hypoxia for 10 days (P〈0.05). Significant dif- ferences were noted in the IK density (at +60 mV) and I-V relationships between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Compared with con- trol rats, the mPAP and RVHI were significantly increased after chronic exposure to hypoxia for 10 days (P〈0.05), which were further increased with prolongation of hypoxia exposure, and there were signifi- cant differences between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Both the mPAP and the RVHI were negatively correlated with the density OflK (r---0.89769 and -0.94476, respectively, both P〈0.01). It is concluded that exposure to hypoxia may cause decreased activity of voltage-gated potassium channel, leading to hypoxia pulmonary vasocon- striction (HPV). Sustained HPV may result in chronic pulmonary hypertension, even chronic pulmonary heart disease, contributing to the pathogenesis of chronic pulmonary heart disease.展开更多
Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, int...Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.展开更多
Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,t...Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,the extract from scorpion venom of Buthus martensii Karsch in China,can inhibit glioma growth,and whether this inhibition is correlated with ion channels of tumor cells.The present study treated rat C6 glioma cells with 0.8,1.2,and 1.6 μg/mL antigliomatin for 20 hours.Whole-cell patch clamp technique showed that antigliomatin delayed rectifier potassium channels of C6 glioma cells.Antigliomatin inhibited tumor growth,which could potentially involve potassium channels of tumor cells.展开更多
Astrocytic Kir4.1 channels and spatial potassium buffering:Astrocytes play a crucial role in maintaining the structural and functional integrity of the brain,which includes formation of the blood-brain barrier,mainte...Astrocytic Kir4.1 channels and spatial potassium buffering:Astrocytes play a crucial role in maintaining the structural and functional integrity of the brain,which includes formation of the blood-brain barrier,maintenance of water and ion homeostasis,metabolism of neurotransmitters and secretion of various neuroactive molecules.展开更多
The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardi...The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardial protection against ischemia,and insulin secretion.The aim of this review is to get insight into the novel roles of KATPchannels in Parkinson's disease(PD),with consideration of the specificities KATPchannels in the central nervous system(CNS), such as the control of neuronal excitability,action potential,mitochondrial function and neurotransmitter release.展开更多
AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltagegated potassium channels in guinea pig proximal colon smooth muscle cells. METHODS: Smooth muscle cells in g...AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltagegated potassium channels in guinea pig proximal colon smooth muscle cells. METHODS: Smooth muscle cells in guinea pig proximal colon were enzymatically isolated. Nystatin-perforated whole cell patch clamp technique was used to record potassium currents including fast transient outward current (Ikto) and delayed rectifier current (Ikdr), tWO of which were isolated pharmacologically with 10 mmol/L tetraethylammonium or 5 mmol/L 4-aminopyridine. Contamination of calcium-dependent potassium currents was minimized with no caldum and 0.2 mmol/L CdCl2 in an external solution. RESULTS: GST (10-100 μmol/L) reversibly and dosedependently reduced the peak amplitude of Ikto with an IC50 value of 22.0±6.9 μmol/L. To a lesser extent, Ikdr, was also inhibited in both peak current and sustained current. GST could not totally block the outward potassium current as a fraction of the outWard potassium current, which was insensitive to GST. GST had no effect on the steady-state activation (n =6) and inactivation kinetics (n =6) of Ikto. Sodium orthovanadate (1 retool/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited GST-induced inhibition (P〈 0.05). CONCLUSION: GST can dose-dependently and reversibly block voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.展开更多
In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine tr...In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease in PC12 cell viability induced by amyloid-β peptide (25-35). Diazoxide protected PC12 cells against amyloid-β peptide (25-35)-induced increases in mitochondrial membrane potential and intracellular reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nw-nitro-L-arginine, also protected PC12 cells from amyloid-β peptide (25-35)-induced increases in both mitochondrial membrane potential and intracellular reactive oxygen species levels. However, the H202-degrading enzyme catalase could not reverse the amyloid-β peptide (25-35)-induced increase in intracellular reactive oxygen species. A 24-hour exposure to amyloid-13 peptide (25-35) did not result in apoptosis or necrosis, suggesting that the increases in both mitochondrial membrane potential and reactive oxygen species levels preceded cell death. The data suggest that amyloid-β peptide (25-35) cytotoxicity is associated with adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β peptide (25-35).展开更多
This study investigated the effects of ATP-sensitive potassium channels on the expression of P21, P27 and leptin. The expression of receptor of ATP-sensitive potassium channels (sulphonylurea receptor, SUR) mRNA in ...This study investigated the effects of ATP-sensitive potassium channels on the expression of P21, P27 and leptin. The expression of receptor of ATP-sensitive potassium channels (sulphonylurea receptor, SUR) mRNA in the preadipocytes and leptin mRNA was detected by PCR after rat preadipocytes were treated with the opener (diazoxide) or inhibitor (glibenclamide) of ATP-sensitive potassium channels during the process of inducing differentiation. The expression of P21 and P27 in preadipocytes treated with diazoxide or glibenclamide was assayed by Western blot. The results showed that the expression of SUR2, not SUR1 was detected in adipose tissue, preadipocytes and adipocytes. Alter treatment of preadipocytes with diazoxide, the expression levels of P21 and P27 were obviously higher than glibenclamide-treat ed group those in control group, but the were lower than those in control expression levels of P21 and P27 in group. During the process of inducing differentiation, the expression of leptin mRNA in preadipocytes treated with diazoxide was increased greatly, but the expression of leptin mRNA in glibenclamide-treated group decreased obviously. It was concluded that ATP-sensitive potassium channels might be involved in the proliferation and differentiation of rat preadipocytes by changing the expression of P21, P27 and leptin.展开更多
Objective: To investigate changes of Ca2+ activated potassium channels (KCa) in autogenous vein grafts. Methods: Contraction of venous ring was measured by means of perfusion in vitro. The intimal rabbits proliferatio...Objective: To investigate changes of Ca2+ activated potassium channels (KCa) in autogenous vein grafts. Methods: Contraction of venous ring was measured by means of perfusion in vitro. The intimal rabbits proliferation of vascular and proliferation of cultured smooth muscle cells(vascular smooth muscle cells, VSMCs)were observed by the means of computerised image analysis and MTT method respectively. Furthermore, whole cell mode of patch clamp was used to record KCa of VSMCs isolated from autogenous vein grafts. Results: One week after transplantation there were no significant differences of contraction and intimal relative thickness between autogenous vein grafts and control. Contraction and intimal relative thickness of autogenous vein graft were significantly increased 2 weeks after transplantation (P<0.05, n=8 vs control), and they was more enhanced 4 weeks after vein transplantation (P<0.01, n=8 vs control).TEA(blocker of Ca2+ activated potassium channels)increased MTT A490 nm value of VSMCs from femoral vein in a dose dependent manner(P<0.05, n=8). KCa current density was significantly attenuated in VSMCs from autogenous vein grafts (1-4) week after transplantation(P<0.05, n=5).Conclusion: KCa is inhibited in autogenous vein graft, which account for vasospasm and intimal proliferation.展开更多
The effects of levobunolol hydrochlorid (Bun) on the type L calciumchannel currents (Ica) and delayed rectifier potassium channel currents (Ik) in isolated ventricular myocytes of guinea pig were studied by using patc...The effects of levobunolol hydrochlorid (Bun) on the type L calciumchannel currents (Ica) and delayed rectifier potassium channel currents (Ik) in isolated ventricular myocytes of guinea pig were studied by using patch clamp wholecell recording techniques. The results were showed that: 1) Bun caused a dosedependent decrease in Ica and a dose-dependent increase in Ik of the ventricular myocytes.The threshold concentrations of Bun for Ica and Ik were 10-8 mol/L and10-7 mol/L respectively. The maximum effective concentration of Bun for both Ica and Ik was 3 × 10-5 mol/L, and half-maximal concentration was 3 × 10-6 mol/L;2 ) Ik was blocked by 2× 10-6mol/L tetraethylammonium (TEA). A concentration of 3 × 10-6 mol/L Bun showed a decreasing effect on the Ica as revealed by the current-voltage relationship curve, i. e., Bun caused an elevation of the curve; 3)When Ica was blocked by 2 × 10-6 mol/L Isoptin (Verapamil), at a concentrationof 3 × 106- mol/L Bun showed an increasing effect on Ik and the effect could be blocked by TEA. The above-mentioned results indicated that Bun had an inhibito-ry effect on Ica and a fascilitatory effect on Ik The results suggested that themolecular mechanisms of antihypertensive, heart rate slowing and β-receptorblocking effects of Bun might be due to decrease of Ica and increase of Ik.展开更多
There is accumulating evidence that the subfamily of large-conductance potassium (“big”, “BK”) channels are involved in diverse, and perhaps coordinated, protective or counteractive responses to local or generaliz...There is accumulating evidence that the subfamily of large-conductance potassium (“big”, “BK”) channels are involved in diverse, and perhaps coordinated, protective or counteractive responses to local or generalized ischemia and hypoxia. Although widely distributed, the physiological differences among BK channels which results from posttranslational modification (alternative splicing) and co-assembly with auxiliary modulatory subunits (<em>β</em><sub>1-4</sub> and <em>γ</em><sub>1-4</sub>), bestows localized differences in subunit composition, distribution, 2<sup>nd</sup>-messenger coupling, and pharmacologic properties. Due to the ubiquitous nature of BK channels and the multiplicity of subtypes, they have many potential therapeutic applications in the maintenance of oxygen homeostasis, cerebro- and cardio-protection, and stimulation of respiration in response to drug-induced respiratory depression. BK channels may also offer other potentially broad and underrecognized promising targets for novel pharmaceutical development.展开更多
Objective: To investigate the role of large Ca^2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human...Objective: To investigate the role of large Ca^2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human airway smooth muscle (HASM) with serum from asthmatic patients. Methods: The effects of NO or/and potassium channel blockers on the tensions of normal and passively sensitized HASM were measured by using nitric oxide donor and potassium blockers, with the isometric tension recording technique. Results: Showed that(1)In the control group and passively sensitized group, Kv blocker(4-AP) cause concentration-dependent augmentation in the contraction induced by histamine ( 1 ×10^-4 mol/L ), (P 〈 0.05), but Glib ( 1 × 10^-2 mol/L ) and TEA (1×10^-4 mol/L) have no significant effects on the contraction induced by histamine (1×10^-4 mol/L). The maximum tension induced by histamine in passively sensitized group is higher than that in the control group (P 〈 0.05). (2) NO-donor Sodium Nitroprusside (SNP) bring about significant relaxation in normal and passively sensitized HASM rings (P 〈 0.05). Relaxations of passively sensitized airway rings [ (29.4 ± 3.3)% ] were significant less than those of normal HASM rings [ (44.1 ± 10.2)% ], (P 〈 0.05).(3) Glib(1×10^-2 mol/L)have no significant effect on the relaxations induced by SNP(1×10^-4 mol/L). 4-AP(1×10^-2 mol/L) inhibited relaxation induced by SNP (1×10^-4 mol/L), (P 〈 0.01). TEA (1×10^-3 tool/L) inhibited relaxation induced by SNP (1×10^-4 mol/L) (P 〈 0.05), and the inhibiting effect in passively sensitized HASM rings were significant less than in normal HASM, (P 〈 0.05). Conclusion: It was concluded that SNP(NO-donor) relaxed the contraction of HASM partly via BKca channel opening. In passively sensitized HASM in vitro, the relaxation of SNP decreased compared with control group, which might be associated with the down-regulating activity of BKca in passively sensitized HASM.展开更多
Objectives Ischemia induced arrhythmia(ventricular tachycardia/ventricular fibrillation) is one of the major causes of death.Potassium channels change are likely to be responsible for the ischemia-related arrhythmias....Objectives Ischemia induced arrhythmia(ventricular tachycardia/ventricular fibrillation) is one of the major causes of death.Potassium channels change are likely to be responsible for the ischemia-related arrhythmias.Cardiac potassium current is the major outward current involved in cardiac repolarization.The properties of potassium channels have been intensively studied.Here,we investigated the association between ischemia induced arrhythmia and potassium channels genetic variations.Methods 23 patients with ventricular tachycardia/ventricular fibrillation induced by ischemia were selected as objects.5ML peripheral blood were taken from each person,from which DNA was extracted us- ing a standard enzymatic phenol-chloroform method.Candidate genes(HERG、KCNJ2、KCNQ1、Mink、Mirp1、Kir2.1、KV4.3、Kir3.1、KV1.5、Kir6.1、Kir6.2、Kir2.1) Were screened for potassium channels gene mutations with direct sequencing methods.Results Here 4 potassium channels gene mutations have been discovered.In the gene coding for the ATP-sensitive K^+ channels subunit Kir6.2,there is a change from valine to isoleucine at the position of 326(V326I).At the position 448,arginine substitutes proline(P448R) in the KC-NQ1 gene.In the gene KCNJ2 two mutations have been found(P156L,Q193H).Conclusions This study implicated that there is a high relationship between ischemia induced arrhythmia and the mutation of potassium channels.In order to identify the precisely relationship there is need functional analysis.展开更多
Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were...Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.展开更多
Uging diet control method to feed the weaning male Wistar rats with selenium and iodine deficiency Keshan endemic area food for 8 weeks to set up animal model. Singal channel recortling in cell attached model was used...Uging diet control method to feed the weaning male Wistar rats with selenium and iodine deficiency Keshan endemic area food for 8 weeks to set up animal model. Singal channel recortling in cell attached model was used to measure cardiac cell membrane potassium channel conductances. which coincide with the cardiac cell membrane potassium channel conductances in normal Wistar rats.The potassium channel conductance on selenlum and lodine cleficiency rat cardiac cell membrane is showing current-voltage increasing lineally in the range of clamping volatge 0±30 mV with channel conductance of 43.4 pS. The channel current does not increase depending on the clamping voltage that is showing the rectifying characteristic and the channel current amplitude can be augmented by added KIOa 5 mmol/L in bath solution. A kind of inward rectiyfing potassium channel activity was recorded, but this channel activity disappeared affer lasting 6~ 10 minutes only. Then an inward rectifying potassium channel with the conductance of 11. 2 PS was activated by KIOa 5 mmol/L, introduced to bath solution. Both conductances are less than that of normal Wistar rats.展开更多
Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular pr...Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular properties and a class of chromanol analogs asI_(Ks) blockers. Results The cross-validated correlation coefficient q^2 values (0.698) and noncross-validated correlation coefficient r^2 values (0.701) proved a good conventional statisticalcorrelation. Conclusion The final SOMFA model has therefore good predictive activity for the furthermolecular design of chromanol I_(Ks) potassium channel blockers.展开更多
The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp tec...The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp technique. BTHP 30 μmol·L -1 significantly prolonged APD 90 from 143±16 ms to 184±21 ms ( P 【0.01, n=5) without affecting either the RP or APA, and the APD prolonging effects of BTHP were independent of extracellular Ca 2+ . BTHP inhibited both I kr (IC 50 =7 9 μmol·L -1 ) and I ks (IC 50 =22 4 μmol·L -1 ) in a concentration dependent fashion. The results demon strated that BTHP had no obvious selectivity for I kr and I ks .展开更多
Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassiu...Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.展开更多
Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting ag...Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting against neuronal apoptosis after cerebral ischemia-reperfusion. Methods Two hundred rats were randomly divided into four groups: sham operation group, ischemia-reperfusion group, K_ATP opener group, and K_ATP blocker group. The middle cerebral artery occlusion (MCAO) model was established by intraluminal suture occlusion method; neuronal apoptosis was detected by TUNEL staining. The mRNA and protein expressions of caspase-12 were detected by semi-quantitative RT-PCR and immunohisto-chemical staining, respectively. Results In ischemia-reperfusion group, K_ATP opener group and K_ATP blocker group, the number of apoptotic cells and the mRNA and protein expressions of caspase-12 gradually increased following cerebral reperfusion, and reached the peak at 24 h. In K_ATP opener group, The number of apoptotic cells was significantly less than that in ischemia-reperfusion group and K_ATP blocker group at 12 h, 24 h, 48 h and 72 h (P 〈 0.05 or P 〈 0.01); while the mRNA and protein levels of caspase-12 were significantly less than those in ischemia-reperfusion group and K_ATP blocker group at all times (P 〈 0.05 or P〈0.01). There were no differences between the ischemia-reperfusion group and K_ATP blocker group at each time (P〉 0.05). Conclusion K_ATP opener may protect neurons from apoptosis following the cerebral ischemia-reperfusion by inhibiting ER stress pathway.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
文摘The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investigated. Eighty male Sprague-Dawley rats were randomly allocated into control group (n=10), acute hypoxic group (n=10), and chronic hypoxic groups (n=60). The chronic hypoxic groups were randomly divided into 6 subgroups (n=10 each) according to the chronic hypoxic periods. The rats in the control group were kept in room air and those in acute hypoxic group in hypoxia envi- ronmental chamber for 8 h. The rats in chronic hypoxic subgroups were kept in hypoxia environmental chamber for 8 h per day for 5, 10, 15, 20, 25, and 30 days, respectively. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), and the current of voltage-gated potas- sium channel (IK) in PASMCs were measured. Results showed that both acute and chronic hypoxia could decrease the IK in PASMCs of rats and the I-V relationship downward shifted to the right. And the peak Ir density at +60mV decreased with prolongation of hypoxia exposure. No significant difference was noted in the density oflK (at +60 mV) and I-V relationship between control group and chronic hy- poxic subgroup exposed to hypoxia for 5 days (P〉0.05), but there was a significant difference between control group and chronic hypoxic subgroup exposed to hypoxia for 10 days (P〈0.05). Significant dif- ferences were noted in the IK density (at +60 mV) and I-V relationships between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Compared with con- trol rats, the mPAP and RVHI were significantly increased after chronic exposure to hypoxia for 10 days (P〈0.05), which were further increased with prolongation of hypoxia exposure, and there were signifi- cant differences between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Both the mPAP and the RVHI were negatively correlated with the density OflK (r---0.89769 and -0.94476, respectively, both P〈0.01). It is concluded that exposure to hypoxia may cause decreased activity of voltage-gated potassium channel, leading to hypoxia pulmonary vasocon- striction (HPV). Sustained HPV may result in chronic pulmonary hypertension, even chronic pulmonary heart disease, contributing to the pathogenesis of chronic pulmonary heart disease.
文摘Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.
基金the Science and Technology Development Program of Jilin Province, No. 20050407-6
文摘Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,the extract from scorpion venom of Buthus martensii Karsch in China,can inhibit glioma growth,and whether this inhibition is correlated with ion channels of tumor cells.The present study treated rat C6 glioma cells with 0.8,1.2,and 1.6 μg/mL antigliomatin for 20 hours.Whole-cell patch clamp technique showed that antigliomatin delayed rectifier potassium channels of C6 glioma cells.Antigliomatin inhibited tumor growth,which could potentially involve potassium channels of tumor cells.
基金supported in part by a Grant from AMED(17ek0109120h0003)a Grant-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology(17K08324 and 15H04892)
文摘Astrocytic Kir4.1 channels and spatial potassium buffering:Astrocytes play a crucial role in maintaining the structural and functional integrity of the brain,which includes formation of the blood-brain barrier,maintenance of water and ion homeostasis,metabolism of neurotransmitters and secretion of various neuroactive molecules.
基金the National Natural Science Foundation of China(No.30700251);the National Basic Research Development Program of China(No.2006CB500706);the Young Excellent Scholar(2007-2008)Program of Shanghai Jiaotong University School of Medicine.
文摘The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardial protection against ischemia,and insulin secretion.The aim of this review is to get insight into the novel roles of KATPchannels in Parkinson's disease(PD),with consideration of the specificities KATPchannels in the central nervous system(CNS), such as the control of neuronal excitability,action potential,mitochondrial function and neurotransmitter release.
文摘AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltagegated potassium channels in guinea pig proximal colon smooth muscle cells. METHODS: Smooth muscle cells in guinea pig proximal colon were enzymatically isolated. Nystatin-perforated whole cell patch clamp technique was used to record potassium currents including fast transient outward current (Ikto) and delayed rectifier current (Ikdr), tWO of which were isolated pharmacologically with 10 mmol/L tetraethylammonium or 5 mmol/L 4-aminopyridine. Contamination of calcium-dependent potassium currents was minimized with no caldum and 0.2 mmol/L CdCl2 in an external solution. RESULTS: GST (10-100 μmol/L) reversibly and dosedependently reduced the peak amplitude of Ikto with an IC50 value of 22.0±6.9 μmol/L. To a lesser extent, Ikdr, was also inhibited in both peak current and sustained current. GST could not totally block the outward potassium current as a fraction of the outWard potassium current, which was insensitive to GST. GST had no effect on the steady-state activation (n =6) and inactivation kinetics (n =6) of Ikto. Sodium orthovanadate (1 retool/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited GST-induced inhibition (P〈 0.05). CONCLUSION: GST can dose-dependently and reversibly block voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.
基金supported by the Project Sponsored by Yantai Science and Technology Bureau,China,No.2010232
文摘In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease in PC12 cell viability induced by amyloid-β peptide (25-35). Diazoxide protected PC12 cells against amyloid-β peptide (25-35)-induced increases in mitochondrial membrane potential and intracellular reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nw-nitro-L-arginine, also protected PC12 cells from amyloid-β peptide (25-35)-induced increases in both mitochondrial membrane potential and intracellular reactive oxygen species levels. However, the H202-degrading enzyme catalase could not reverse the amyloid-β peptide (25-35)-induced increase in intracellular reactive oxygen species. A 24-hour exposure to amyloid-13 peptide (25-35) did not result in apoptosis or necrosis, suggesting that the increases in both mitochondrial membrane potential and reactive oxygen species levels preceded cell death. The data suggest that amyloid-β peptide (25-35) cytotoxicity is associated with adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β peptide (25-35).
文摘This study investigated the effects of ATP-sensitive potassium channels on the expression of P21, P27 and leptin. The expression of receptor of ATP-sensitive potassium channels (sulphonylurea receptor, SUR) mRNA in the preadipocytes and leptin mRNA was detected by PCR after rat preadipocytes were treated with the opener (diazoxide) or inhibitor (glibenclamide) of ATP-sensitive potassium channels during the process of inducing differentiation. The expression of P21 and P27 in preadipocytes treated with diazoxide or glibenclamide was assayed by Western blot. The results showed that the expression of SUR2, not SUR1 was detected in adipose tissue, preadipocytes and adipocytes. Alter treatment of preadipocytes with diazoxide, the expression levels of P21 and P27 were obviously higher than glibenclamide-treat ed group those in control group, but the were lower than those in control expression levels of P21 and P27 in group. During the process of inducing differentiation, the expression of leptin mRNA in preadipocytes treated with diazoxide was increased greatly, but the expression of leptin mRNA in glibenclamide-treated group decreased obviously. It was concluded that ATP-sensitive potassium channels might be involved in the proliferation and differentiation of rat preadipocytes by changing the expression of P21, P27 and leptin.
文摘Objective: To investigate changes of Ca2+ activated potassium channels (KCa) in autogenous vein grafts. Methods: Contraction of venous ring was measured by means of perfusion in vitro. The intimal rabbits proliferation of vascular and proliferation of cultured smooth muscle cells(vascular smooth muscle cells, VSMCs)were observed by the means of computerised image analysis and MTT method respectively. Furthermore, whole cell mode of patch clamp was used to record KCa of VSMCs isolated from autogenous vein grafts. Results: One week after transplantation there were no significant differences of contraction and intimal relative thickness between autogenous vein grafts and control. Contraction and intimal relative thickness of autogenous vein graft were significantly increased 2 weeks after transplantation (P<0.05, n=8 vs control), and they was more enhanced 4 weeks after vein transplantation (P<0.01, n=8 vs control).TEA(blocker of Ca2+ activated potassium channels)increased MTT A490 nm value of VSMCs from femoral vein in a dose dependent manner(P<0.05, n=8). KCa current density was significantly attenuated in VSMCs from autogenous vein grafts (1-4) week after transplantation(P<0.05, n=5).Conclusion: KCa is inhibited in autogenous vein graft, which account for vasospasm and intimal proliferation.
文摘The effects of levobunolol hydrochlorid (Bun) on the type L calciumchannel currents (Ica) and delayed rectifier potassium channel currents (Ik) in isolated ventricular myocytes of guinea pig were studied by using patch clamp wholecell recording techniques. The results were showed that: 1) Bun caused a dosedependent decrease in Ica and a dose-dependent increase in Ik of the ventricular myocytes.The threshold concentrations of Bun for Ica and Ik were 10-8 mol/L and10-7 mol/L respectively. The maximum effective concentration of Bun for both Ica and Ik was 3 × 10-5 mol/L, and half-maximal concentration was 3 × 10-6 mol/L;2 ) Ik was blocked by 2× 10-6mol/L tetraethylammonium (TEA). A concentration of 3 × 10-6 mol/L Bun showed a decreasing effect on the Ica as revealed by the current-voltage relationship curve, i. e., Bun caused an elevation of the curve; 3)When Ica was blocked by 2 × 10-6 mol/L Isoptin (Verapamil), at a concentrationof 3 × 106- mol/L Bun showed an increasing effect on Ik and the effect could be blocked by TEA. The above-mentioned results indicated that Bun had an inhibito-ry effect on Ica and a fascilitatory effect on Ik The results suggested that themolecular mechanisms of antihypertensive, heart rate slowing and β-receptorblocking effects of Bun might be due to decrease of Ica and increase of Ik.
文摘There is accumulating evidence that the subfamily of large-conductance potassium (“big”, “BK”) channels are involved in diverse, and perhaps coordinated, protective or counteractive responses to local or generalized ischemia and hypoxia. Although widely distributed, the physiological differences among BK channels which results from posttranslational modification (alternative splicing) and co-assembly with auxiliary modulatory subunits (<em>β</em><sub>1-4</sub> and <em>γ</em><sub>1-4</sub>), bestows localized differences in subunit composition, distribution, 2<sup>nd</sup>-messenger coupling, and pharmacologic properties. Due to the ubiquitous nature of BK channels and the multiplicity of subtypes, they have many potential therapeutic applications in the maintenance of oxygen homeostasis, cerebro- and cardio-protection, and stimulation of respiration in response to drug-induced respiratory depression. BK channels may also offer other potentially broad and underrecognized promising targets for novel pharmaceutical development.
文摘Objective: To investigate the role of large Ca^2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human airway smooth muscle (HASM) with serum from asthmatic patients. Methods: The effects of NO or/and potassium channel blockers on the tensions of normal and passively sensitized HASM were measured by using nitric oxide donor and potassium blockers, with the isometric tension recording technique. Results: Showed that(1)In the control group and passively sensitized group, Kv blocker(4-AP) cause concentration-dependent augmentation in the contraction induced by histamine ( 1 ×10^-4 mol/L ), (P 〈 0.05), but Glib ( 1 × 10^-2 mol/L ) and TEA (1×10^-4 mol/L) have no significant effects on the contraction induced by histamine (1×10^-4 mol/L). The maximum tension induced by histamine in passively sensitized group is higher than that in the control group (P 〈 0.05). (2) NO-donor Sodium Nitroprusside (SNP) bring about significant relaxation in normal and passively sensitized HASM rings (P 〈 0.05). Relaxations of passively sensitized airway rings [ (29.4 ± 3.3)% ] were significant less than those of normal HASM rings [ (44.1 ± 10.2)% ], (P 〈 0.05).(3) Glib(1×10^-2 mol/L)have no significant effect on the relaxations induced by SNP(1×10^-4 mol/L). 4-AP(1×10^-2 mol/L) inhibited relaxation induced by SNP (1×10^-4 mol/L), (P 〈 0.01). TEA (1×10^-3 tool/L) inhibited relaxation induced by SNP (1×10^-4 mol/L) (P 〈 0.05), and the inhibiting effect in passively sensitized HASM rings were significant less than in normal HASM, (P 〈 0.05). Conclusion: It was concluded that SNP(NO-donor) relaxed the contraction of HASM partly via BKca channel opening. In passively sensitized HASM in vitro, the relaxation of SNP decreased compared with control group, which might be associated with the down-regulating activity of BKca in passively sensitized HASM.
文摘Objectives Ischemia induced arrhythmia(ventricular tachycardia/ventricular fibrillation) is one of the major causes of death.Potassium channels change are likely to be responsible for the ischemia-related arrhythmias.Cardiac potassium current is the major outward current involved in cardiac repolarization.The properties of potassium channels have been intensively studied.Here,we investigated the association between ischemia induced arrhythmia and potassium channels genetic variations.Methods 23 patients with ventricular tachycardia/ventricular fibrillation induced by ischemia were selected as objects.5ML peripheral blood were taken from each person,from which DNA was extracted us- ing a standard enzymatic phenol-chloroform method.Candidate genes(HERG、KCNJ2、KCNQ1、Mink、Mirp1、Kir2.1、KV4.3、Kir3.1、KV1.5、Kir6.1、Kir6.2、Kir2.1) Were screened for potassium channels gene mutations with direct sequencing methods.Results Here 4 potassium channels gene mutations have been discovered.In the gene coding for the ATP-sensitive K^+ channels subunit Kir6.2,there is a change from valine to isoleucine at the position of 326(V326I).At the position 448,arginine substitutes proline(P448R) in the KC-NQ1 gene.In the gene KCNJ2 two mutations have been found(P156L,Q193H).Conclusions This study implicated that there is a high relationship between ischemia induced arrhythmia and the mutation of potassium channels.In order to identify the precisely relationship there is need functional analysis.
文摘Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.
文摘Uging diet control method to feed the weaning male Wistar rats with selenium and iodine deficiency Keshan endemic area food for 8 weeks to set up animal model. Singal channel recortling in cell attached model was used to measure cardiac cell membrane potassium channel conductances. which coincide with the cardiac cell membrane potassium channel conductances in normal Wistar rats.The potassium channel conductance on selenlum and lodine cleficiency rat cardiac cell membrane is showing current-voltage increasing lineally in the range of clamping volatge 0±30 mV with channel conductance of 43.4 pS. The channel current does not increase depending on the clamping voltage that is showing the rectifying characteristic and the channel current amplitude can be augmented by added KIOa 5 mmol/L in bath solution. A kind of inward rectiyfing potassium channel activity was recorded, but this channel activity disappeared affer lasting 6~ 10 minutes only. Then an inward rectifying potassium channel with the conductance of 11. 2 PS was activated by KIOa 5 mmol/L, introduced to bath solution. Both conductances are less than that of normal Wistar rats.
文摘Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular properties and a class of chromanol analogs asI_(Ks) blockers. Results The cross-validated correlation coefficient q^2 values (0.698) and noncross-validated correlation coefficient r^2 values (0.701) proved a good conventional statisticalcorrelation. Conclusion The final SOMFA model has therefore good predictive activity for the furthermolecular design of chromanol I_(Ks) potassium channel blockers.
文摘The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp technique. BTHP 30 μmol·L -1 significantly prolonged APD 90 from 143±16 ms to 184±21 ms ( P 【0.01, n=5) without affecting either the RP or APA, and the APD prolonging effects of BTHP were independent of extracellular Ca 2+ . BTHP inhibited both I kr (IC 50 =7 9 μmol·L -1 ) and I ks (IC 50 =22 4 μmol·L -1 ) in a concentration dependent fashion. The results demon strated that BTHP had no obvious selectivity for I kr and I ks .
基金Acknowledgments We thank Dr Emily Liman (University of Southern California, USA) for providing the pGEMHE vector for the Xenopus oocyte experiments. We also thank Dr Richer Gaber (Northwestern Uni- versity, USA) for providing the yeast mutant strain with K+ transport deficiency. We are grateful to Dr Rainer Hedrich (University of Wurzburg, Germany) for critical discussion. This work was supported by the National Natural Science Foundation of China (grant no. 30830013 to WHW), the Beijing Municipal Education Commission (grant no. YB20081001901 to WHW) and the Program of Introducing Talents of Discipline to Universities (grant no. B06003 to WHW).
文摘Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.
文摘Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting against neuronal apoptosis after cerebral ischemia-reperfusion. Methods Two hundred rats were randomly divided into four groups: sham operation group, ischemia-reperfusion group, K_ATP opener group, and K_ATP blocker group. The middle cerebral artery occlusion (MCAO) model was established by intraluminal suture occlusion method; neuronal apoptosis was detected by TUNEL staining. The mRNA and protein expressions of caspase-12 were detected by semi-quantitative RT-PCR and immunohisto-chemical staining, respectively. Results In ischemia-reperfusion group, K_ATP opener group and K_ATP blocker group, the number of apoptotic cells and the mRNA and protein expressions of caspase-12 gradually increased following cerebral reperfusion, and reached the peak at 24 h. In K_ATP opener group, The number of apoptotic cells was significantly less than that in ischemia-reperfusion group and K_ATP blocker group at 12 h, 24 h, 48 h and 72 h (P 〈 0.05 or P 〈 0.01); while the mRNA and protein levels of caspase-12 were significantly less than those in ischemia-reperfusion group and K_ATP blocker group at all times (P 〈 0.05 or P〈0.01). There were no differences between the ischemia-reperfusion group and K_ATP blocker group at each time (P〉 0.05). Conclusion K_ATP opener may protect neurons from apoptosis following the cerebral ischemia-reperfusion by inhibiting ER stress pathway.