期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
The Relative Deficiency of Potassium Ions in Nerve Cells Causes Abnormal Functions and Neurological and Mental Diseases 被引量:5
1
作者 Jiapei Dai 《Natural Science》 CAS 2022年第10期441-447,共7页
The difference of intracellular potassium (K+) and extracellular sodium (Na+) concentrations in nerve cells plays an important role in the functional activities of the nervous system. The maintenance of this differenc... The difference of intracellular potassium (K+) and extracellular sodium (Na+) concentrations in nerve cells plays an important role in the functional activities of the nervous system. The maintenance of this difference mainly depends on the number and efficiency of Na, K-ATPase. However, due to the functional activity of nerve cells, this system often loses its balance. An undetectable phenomenon is the relative deficiency of potassium in nerve cells in specific brain regions or neural network structures, which leads to dysfunction of specific nerve cell populations or brain regions, thus leading to different types of neurological disorders or diseases. The relative deficiency of potassium ions in nerve cells may be caused by the competitive failure of nerve cells to effectively use potassium ions stored in the body, and the core reason may be related to insufficient potassium obtained through diet or effectively absorbed by the digestive system. Therefore, a simple strategy is to treat a patient by taking appropriate potassium orally. This paper presents a case with great success by using such a method to treat a patient with major depression. 展开更多
关键词 potassium ions Relative Deficiency of potassium ions Na+ K+-ATPase Neurological and Neuropsychiatric Disorders DEPRESSION
下载PDF
The Core Mechanism of Traditional Medicine Is the Rational and Effective Use of Potassium Ions 被引量:2
2
作者 Jiapei Dai 《Natural Science》 CAS 2022年第11期483-491,共9页
The use of traditional medicines including natural drugs, especially traditional Chinese medicine (TCM), plays an important role in the prevention and treatment of human diseases;however, so far, the mechanism of its ... The use of traditional medicines including natural drugs, especially traditional Chinese medicine (TCM), plays an important role in the prevention and treatment of human diseases;however, so far, the mechanism of its prevention, health care and treatment of diseases is unclear. Here, I propose that the core mechanism of traditional medicines is to correct the relative deficiency of potassium ions in body and at the same time improve the utilization efficiency of potassium ions, so as to improve or restore cell functions in organs and tissues, and let the body return to a normal state. In order to achieve such a core goal, the therapeutic effect of natural drugs has an important relationship with the rational matching of prescriptions and the quality of drugs, with particular emphasis on the concentrations and quantum energy levels of potassium ions or their compounds in the formula. The understanding of the core effect of potassium in natural drugs has a specific and important guiding role for the artificial cultivation and rational use of natural drugs. Moreover, these ideas may also provide an important theoretical basis for the development of modern agriculture and medicine, and the rational and comprehensive utilization of potassium resources. 展开更多
关键词 Traditional Medicines potassium Resource Relative Deficiency of potassium ions Na+ K+-ATPase Quantum Biology
下载PDF
A novel sensor of potassium ions based on mode-filtered light detection
3
作者 Xiao Hong Zhao Li Ping Yang +3 位作者 Suo Zhu Wu Wen Ping Cheng Shao Min Shuang Chuan Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第10期1243-1246,共4页
A novel potassium ions sensor based on mode-filtered light detection was reported. The analyzer was consisting of an optical fiber immobilized with a dye of bromocresol green and a fused-silica capillary. It was found... A novel potassium ions sensor based on mode-filtered light detection was reported. The analyzer was consisting of an optical fiber immobilized with a dye of bromocresol green and a fused-silica capillary. It was found that mode-filtered light intensity decreased with the concentration of potassium ions and a linear detection range of 0.25-20 mmol/L (R^2 = 0.9977) was obtained with a detection limit of 9 ×10^-5 mol/L as well as fast response, good reproducibility and reversibility in the working concentration range. 展开更多
关键词 Mode-filtered light potassium ions Aqueous solution Bromocresol green
下载PDF
Deciphering the potassium storage phase conversion mechanism of phosphorus by combined solid-state NMR spectroscopy and density functional theory calculations
4
作者 Huixin Chen Lingyi Meng +4 位作者 Hongjun Yue Chengxin Peng Qiaobao Zhang Guiming Zhong Ding Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期45-53,共9页
Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphoru... Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs. 展开更多
关键词 Red phosphorus Phase conversion Solid-state NMR potassium ion batteries
下载PDF
Modulating Co-Co bonds average length in Co_(0.85)Se_(1-x)S_(x) to enhance conversion reaction for potassium storage
5
作者 Daming Chen Yuchun Liu +5 位作者 Pan Feng Xiao Tao Zhiquan Huang Xiyu Zhang Min Zhou Jian Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期111-121,共11页
While alloying transition metal chalcogenides(TMCs)with other chalcogen elements can effectively improve their conductivity and electrochemical properties,the optimal alloying content is still uncertain.In this study,... While alloying transition metal chalcogenides(TMCs)with other chalcogen elements can effectively improve their conductivity and electrochemical properties,the optimal alloying content is still uncertain.In this study,we study the influence of dopant concentration on the chemical bonds in TMC and reveal the associated stepwise conversion reaction mechanism for potassium ion storage.According to density function theory calculations,appropriate S-doping in Co0.85Se(Co_(0.85)Se_(1-x)S_(x))can reduce the average length of Co-Co bonds because of the electronegativity variation,which is thermodynamically favourable to the phase transition reactions.The optimal Se/S ratio(x=0.12)for the conductivity has been obtained from experimental results.When assembled as an anode in potassium-ion batteries(PIBs),the sample with optimized Se/S ratio exhibits extraordinary electrochemical performance.The rate performance(229.2 mA h g^(-1)at 10 A g^(-1))is superior to the state-of-the-art results.When assembled with Prussian blue(PB)as a cathode,the pouch cell exhibits excellent performance,demonstrating its great potential for applications.Moreover,the stepwise K+storage mechanism caused by the coexistence of S and Se is revealed by in-situ X-ray diffraction and ex-situ transmission electron microscopy techniques.Hence,this work not only provides an effective strategy to enhance the electrochemical performance of transition metal chalcogenides but also reveals the underlying mechanism for the construction of advanced electrode materials. 展开更多
关键词 Co_(0.85)Se_(1-x)S_(x) Co-Co bonds Phase transition reactions Optimal Se/s potassium ion batteries
下载PDF
Insights on advanced g‐C_(3)N_(4)in energy storage:Applications,challenges,and future
6
作者 Xiaojie Yang Jian Peng +7 位作者 Lingfei Zhao Hang Zhang Jiayang Li Peng Yu Yameng Fan Jiazhao Wang Huakun Liu Shixue Dou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期22-78,共57页
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages... Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications. 展开更多
关键词 g‐C_(3)N_(4) lithium‐ion batteries lithium‐sulfur batteries potassium‐ion batteries sodium‐ion batteries SUPERCAPACITORS
下载PDF
Advanced Anode Materials of Potassium Ion Batteries:from Zero Dimension to Three Dimensions 被引量:6
7
作者 Jiefeng Zheng Yuanji Wu +3 位作者 Yingjuan Sun Jianhua Rong Hongyan Li Li Niu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期208-244,共37页
Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs)... Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs).However,there are still some obstacles like large size of K+to commercial PIBs applications.Therefore,rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+accommodated and fast diffused.Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties.Accordingly,quite a few recent anode materials with different dimensions in PIBs have been reported,mainly involving in carbon materials,metal-based chalcogenides(MCs),metal-based oxides(MOs),and alloying materials.Among these anodes,nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation.Besides,MCs,MOs,and alloying materials with nanostructures can effectively alleviate their stress changes.Herein,these materials are classified into 0D,1D,2D,and 3D.Particularly,the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined.Meanwhile,some strategies are proposed to deal with the current disadvantages.Hope that the readers are enlightened from this review to carry out further experiments better. 展开更多
关键词 potassium ion batteries ANODE Structure design NANOMATERIALS Dimensions
下载PDF
Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions 被引量:6
8
作者 Sijia Di Pan Ding +4 位作者 Yeyun Wang Yunling Wu Jun Deng Lin Jia Yanguang Li 《Nano Research》 SCIE EI CAS CSCD 2020年第1期225-230,共6页
Potassium-ion batteries are regarded as the low-cost alternative to lithium-ion batteries.However,their development is hampered by the lack of suitable electrode materials.In this work,we demonstrate that MoS2 with ex... Potassium-ion batteries are regarded as the low-cost alternative to lithium-ion batteries.However,their development is hampered by the lack of suitable electrode materials.In this work,we demonstrate that MoS2 with expanded interlayers represents a promising candidate for the electrochemical storage of potassium ions.Hierarchical interlayer-expanded MoS2 assemblies supported on carbon nanotubes are prepared via a straightforward solution method.The increased interlayer spacing not only enables the better accommodation of foreign ions,but also lowers the diffusion energy barrier and improves diffusion kinetics of ions.When investigated as the anode material of potassium ion batteries,our interlayer-expanded MoS2 assemblies exhibit an excellent electrochemical performance with large capacity(up to∼520 mAhg^−1),good rate capability(∼310 mAhg^−1 at 1,000 mAg^−1)and impressive cycling stability,superior to most competitors. 展开更多
关键词 molybdenum disulfide interlayer expansion potassium ion batteries hierarchical structure
原文传递
Sulfur/nitrogen/oxygen tri-doped carbon nanospheres as an anode for potassium ion storage 被引量:2
9
作者 Xiaoyan Chen Wang Zhou +2 位作者 Jilei Liu Yingpeng Wu Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期338-347,I0009,共11页
Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle p... Carbonaceous materials are considered as ideal anode for potassium ion batteries(PIBs)due to their abundant resources and stable physical and chemical properties.However,improvements of reversible capacity and cycle performance are still needed,aiming to the practical application.Herein,S/N/O tridoped carbon(SNOC)nanospheres are prepared by in-situ vulcanized polybenzoxazine.The S/N/O tridoped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity.Moreover,the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area,which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed,resulting in excellent rate performance.As an anode for PIBs,SNOC shows attractive rate performance(438.5 mA h g^(-1) at 50 mA g^(-1) and 174.5 mA h g^(-1) at2000 mA g^(-1)),ultra-high reversible capacity(397.4 mA h g^(-1) at 100 mA g^(-1) after 700 cycles)and ultra-long cycling life(218.9 mA h g^(-1) at 2000 mA g^(-1) after 7300 cycles,123.1 mA h g^(-1) at3000 mA g^(-1) after 16500 cycles and full cell runs for 4000 cycles).Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions,and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC. 展开更多
关键词 potassium ion batteries S/N/O tri-doped Carbon nanospheres ANODE
下载PDF
Bi/Bi_(3)Se_(4) nanoparticles embedded in hollow porous carbon nanorod:High rate capability material for potassium-ion batteries 被引量:1
10
作者 Zhisong Chen Yuanji Wu +3 位作者 Xi Liu Yiwei Zhang Lichun Yang Hongyan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期462-471,I0011,共11页
Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compound... Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction. 展开更多
关键词 Bi_(3)Se_(4) potassium ion battery Hollow porous carbon rod Conversion-alloying mechanism Bi MOF
下载PDF
Novel Bilayer-Shelled N,O-Doped Hollow Porous Carbon Microspheres as High Performance Anode for Potassium-Ion Hybrid Capacitors 被引量:1
11
作者 Zhen Pan Yong Qian +3 位作者 Yang Li Xiaoning Xie Ning Lin Yitai Qian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期423-435,共13页
With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-do... With the advantages of high energy/power density,long cycling life and low cost,dual-carbon potassium ion hybrid capacitors(PIHCs)have great potential in the field of energy storage.Here,a novel bilayer-shelled N,O-doped hollow porous carbon microspheres(NOHPC)anode has been prepared by a self-template method,which is consisted of a dense thin shell and a hollow porous spherical core.Excitingly,the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g^(−1)at 0.1 A g^(−1)and a capacity of 201.1 mAh g^(−1)at 5 A g^(−1)after 6000 cycles.In combination with ex situ characterizations and density functional theory calculations,the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+adsorption and intercalation capabilities,and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure.Meanwhile,the hollow porous activated carbon microspheres(HPAC)cathode with a high specific surface area(1472.65 m^(2)g^(−1))deriving from etching NOHPC with KOH,contributing to a high electrochemical adsorption capacity of 71.2 mAh g^(−1)at 1 A g^(−1).Notably,the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg^(−1)at a power density of 939.6 W kg^(−1)after 6000 consecutive charge-discharge cycles. 展开更多
关键词 Self-template method Bilayer-shelled hollow porous structure N O-doped carbon microspheres Dual-carbon potassium‐ion hybrid capacitor
下载PDF
Solid–liquid Phase Equilibria in the Aqueous Ternary System Containing Lithium,Potassium,and Sulfate ions at 288.15 K
12
作者 WANG Shiqiang TANG Peng +1 位作者 GUO Yafei DENG Tianlong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期379-380,共2页
1 Introduction Salt lakes are widely distributed in the western of China,especially in the area of Qinghai-Xizang(Tibet)Plateau.A series of salt lakes in the Qaidam Basin,located in Qinghai Province,China,is famous fo... 1 Introduction Salt lakes are widely distributed in the western of China,especially in the area of Qinghai-Xizang(Tibet)Plateau.A series of salt lakes in the Qaidam Basin,located in Qinghai Province,China,is famous for their abundance of lithium,potassium and boron resources(Zheng et al,1988;Deng et al,2012).It is well known that the 展开更多
关键词 Li SO SOLID liquid Phase Equilibria in the Aqueous Ternary System Containing Lithium potassium and Sulfate ions at 288.15 K
下载PDF
Constructing Carbon Nanobubbles with Boron Doping as Advanced Anode for Realizing Unprecedently Ultrafast Potassium Ion Storage
13
作者 Huanyu Liang Zining Sun +7 位作者 Mingrui Zhang Wei Hu Jing Shi Jingwei Chen Weiqian Tian Minghua Huang Jingyi Wu Huanlei Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期248-257,共10页
Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scal... Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scale application.Here,a facile template method is utilized to synthesize boron doping carbon nanobubbles(BCNBs).The incorporation of boron into the carbon structure introduces abundant defective sites and improves conductivity,facilitating both the intercalation-controlled and capacitivecontrolled capacities.Moreover,theoretical calculation proves that boron doping can effectively improve the conductivity and facilitate electrochemical reversibility in PIBs.Correspondingly,the designed BCNBs anode delivers a high specific capacity(464 mAh g^(-1)at 0.05 A g^(-1))with an extraordinary rate performance(85.7 mAh g^(-1)at 50 A g^(-1)),and retains a considerable capacity retention(95.2%relative to the 100th charge after 2000 cycles).Besides,the strategy of pre-forming stable artificial inorganic solid electrolyte interface effectively realizes high initial coulombic efficiency of 79.0%for BCNBs.Impressively,a dual-carbon potassium-ion capacitor coupling BCNBs anode displays a high energy density(177.8 Wh kg^(-1)).This work not only shows great potential for utilizing heteroatom-doping strategy to boost the potassium ion storage but also paves the way for designing high-energy/power storage devices. 展开更多
关键词 high electrical conductivity potassium ion batteries potassium ion storage superior reversibility
下载PDF
The Continuous Relative Deficiency of Intracellular Potassium Is a Core Mechanism for the Occurrence and Metastasis of Tumor Cancer Cells 被引量:2
14
作者 Jiapei Dai 《Natural Science》 CAS 2022年第11期492-496,共5页
The core mechanism for occurrence of tumor cancer cells is related to the continuous relative deficiency of potassium ions in the cells of organs and tissues, which results in embryonic like proliferation and differen... The core mechanism for occurrence of tumor cancer cells is related to the continuous relative deficiency of potassium ions in the cells of organs and tissues, which results in embryonic like proliferation and differentiation in the affected cells. The purpose of the metastasis of cancer cells is to obtain and utilize the potassium resources in other organs in body. However, if the overall potassium storage in body is obviously insufficient, the metastatic cancer cells still fail to achieve the purpose of obtaining enough potassium and turn into normal cells, further proliferation and differentiation of cancer cells will continue, and finally will lead to functional decline in the organs and tissues affected or death. Therefore, the key means to prevent and treat tumors and cancers is to ensure the normal and balanced potassium ions in cells in various organs and tissues, so as to avoid the formation of tumors and cancer cells caused by obvious deficiency of potassium ions. 展开更多
关键词 potassium ions Relative Deficiency of potassium ions Na + K + -ATPase Tumor Cancer Cells Metastasis of Cancer Cells
下载PDF
Relative Deficiency of Intracellular Potassium in Relation to the Functional Changes and Diseases in Non-Nervous System 被引量:2
15
作者 Jiapei Dai 《Natural Science》 CAS 2022年第11期497-502,共6页
Because of the huge differences in cellular structures and functions in non-nervous system and interaction between the nervous and non-nervous systems in potassium ion absorption, storage and effective utilization, th... Because of the huge differences in cellular structures and functions in non-nervous system and interaction between the nervous and non-nervous systems in potassium ion absorption, storage and effective utilization, the organs, tissues and tissue cells in non-nervous system have different functional dependence on potassium ion and its characteristics in competitive distribution differences. Therefore, I propose that the relative deficiency of potassium in cells in non-nervous organs and tissues may show very different functional changes and disease characteristics. Some are susceptible to pathogenic microorganisms, some may result in decrease of cell functions, and other may have comprehensive changes such as chronic inflammation. Therefore, the core causes for the functional changes and lesions of these non-nervous organs and tissues are closely related to the relative deficiency of potassium ions in their cells, which provides important ideas for the prevention and treatment of these functional changes and diseases. 展开更多
关键词 potassium Ion Relative Deficiency of potassium ions Na+ K+-ATPase Non-Nervous Diseases Quantum Biology
下载PDF
Repressing iron overload ameliorates central poststroke pain via the Hdac2-Kv1.2 axis in a rat model of hemorrhagic stroke
16
作者 He Fang Mengjie Li +6 位作者 Jingchen Yang Shunping Ma Li Zhang Hongqi Yang Qiongyan Tang Jing Cao Weimin Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2708-2722,共15页
Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha... Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment. 展开更多
关键词 central post-stroke pain hemorrhagic stroke histone deacetylase iron overload voltage-gated potassium ion channel 1.2
下载PDF
Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields
17
作者 An-Ying Zhang Xiao-Feng Pang 《Journal of Electronic Science and Technology of China》 2008年第1期87-90,共4页
Previous studies show that exposure to high-voltage electric fields would influence the electro-cardiogram both in experimental animals and human beings.The effects of the external electric fields upon action potentia... Previous studies show that exposure to high-voltage electric fields would influence the electro-cardiogram both in experimental animals and human beings.The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model,LR91.Fourth-order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail.Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane.This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields. 展开更多
关键词 ELECTROCARDIOGRAM high-voltage electricfields potassium ions Runger-Kuta.
下载PDF
Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage 被引量:8
18
作者 Junxian Hu Yangyang Xie +1 位作者 Meng Yin Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期327-334,共8页
Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of ... Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications. 展开更多
关键词 Hard carbon Nitrogen doping Graphitic domains potassium ion batteries Adsorption-intercalation mechanism
下载PDF
Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage 被引量:5
19
作者 Guangzeng Cheng Wenzhe Zhang +7 位作者 Wei Wang Huanlei Wang Yixian Wang Jing Shi Jingwei Chen Shuai Liu Minghua Huang David Mitlin 《Carbon Energy》 SCIE CAS 2022年第5期986-1001,共16页
We fabricated sulfur and nitrogen codoped cyanoethyl cellulose-derived carbons(SNCCs)with state-of-the-art electrochemical performance for potassium ion battery(PIB)and potassium ion capacitor(PIC)anodes.At 0.2,0.5,1,... We fabricated sulfur and nitrogen codoped cyanoethyl cellulose-derived carbons(SNCCs)with state-of-the-art electrochemical performance for potassium ion battery(PIB)and potassium ion capacitor(PIC)anodes.At 0.2,0.5,1,2,5,and 10 A g−1,the SNCC shows reversible capacities of 369,328,249,208,150,and 121 mA h g−1,respectively.Due to a high packing density of 1.01 g cm^(−3),the volumetric capacities are also uniquely favorable,being 373,331,251,210,151,and 122 mA h cm^(−3)at these currents,respectively.SNCC also shows promising initial Coulombic efficiency of 69.0%and extended cycling stability with 99.8%capacity retention after 1000 cycles.As proof of principle,an SNCC-based PIC is fabricated and tested,achieving 94.3Wh kg^(−1)at 237.5Wkg^(−1)and sustaining over 6000 cycles at 30 A g−1 with 84.5%retention.The internal structure of S and N codoped SNCC is based on highly dilated and defective graphene sheets arranged into nanometer-scale walls.Using a baseline S-free carbon for comparison(termed NCC),the role of S doping and the resultant dilated structure was elucidated.According to galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses,as well as COMSOL simulations,this structure promotes rapid solid-state diffusion of potassium ions and a solid electrolyte interphase that is stable during cycling.X-ray diffraction was used to probe the ion storage mechanisms in SNCC,establishing the role of reversible potassium intercalation and the presence of KC36,KC24,and KC8 phases at low voltages. 展开更多
关键词 carbon manufacturing commercial carbon graphene potassium ion battery(KIP PIB) potassium ion storage
下载PDF
Two outward potassium current types are expressed during the neural differentiation of neural stem cells 被引量:3
20
作者 Ruiying Bai Guowei Gao +1 位作者 Ying Xing Hong Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第28期2656-2665,共10页
The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of... The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cell patch-clamp re- cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo- campus could be cultured and induced to differentiate into functional neurons under defined condi- tions in vitro. The differentiated neurons expressed two types of outward potassium ion cur'ents similar to those of mature neurons in vivo. 展开更多
关键词 neural regeneration neural stem cells hippocampus proliferation differentiation neurons PATCH-CLAMP electrophysiological properties transient outward potassium ion current delayed rec-tifier potassium ion current inactivation NESTIN neuron-specific enolase grants-supported paper NEUROREGENERATION
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部