Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages...Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.展开更多
Mars data presents a collection of startling and seemly contradictory isotopic data: a glaring excess of the two radiogenic isotopes <sup>129</sup>Xe/<sup>132</sup>Xe @ 2.5 and <sup>40<...Mars data presents a collection of startling and seemly contradictory isotopic data: a glaring excess of the two radiogenic isotopes <sup>129</sup>Xe/<sup>132</sup>Xe @ 2.5 and <sup>40</sup>Ar/<sup>36</sup>Ar @ 3000 enabled identification of MM (Mars Meteorites) because they are so different than any other major Solar System reservoir. Mars appears to have lost an original atmosphere of pressure 1 bar or greater, yet the ratio <sup>14</sup>N/<sup>15</sup>N indicates only a loss of a few millibar by Solar Wind Erosion. The LPARE (Large Planet Altering R-process Event) hypothesis attempts to explain these major isotopic puzzles at Mars by postulating that two massive, anomalous thermonuclear explosions, rich in R-process physics, occurred over the surface of Northern Mars in the past, approximately 500 million years ago, and that these explosions created the <sup>129</sup>Xe/<sup>132</sup>Xe excess, and the accompanying intense neutron bombardment of Mars atmosphere and regolith created the <sup>40</sup>Ar/<sup>36</sup>Ar excess off of potassium in the surface rocks. The collateral massive and non-mass fractionating atmospheric loss, and the intense neutron bombardment of <sup>14</sup>N in the atmosphere primarily created the <sup>14</sup>N/<sup>15</sup>N ratio we presently observe, with some mass fractionating erosion of the residual atmosphere. This LPARE hypothesis is found to explain other isotopic features of Mars atmosphere and surface. <sup>80</sup>Kr and <sup>82</sup>Kr are hyperabundant in the Mars atmosphere and in the youngest MMs indicating intense irradiation of Mars surface with neutrons. Although there is presently no plausible explanation for the nuclear events, the hypothesis can be tested through related nuclear products such as Pu-244.展开更多
基金The Special Basic Research Fund for Central Public Research Institutes (First Institute of Oceanograpgy,State Oceanic Administration)under contract No.GY02 -2008G38the Special Plan of Science and Technology Generalship in Qingdao under contract No.05-2 -JC-79the Special Project of Technical Foundational Work and Social Public Welfare Research under contract No.2003DIB3J114
文摘Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.
文摘Mars data presents a collection of startling and seemly contradictory isotopic data: a glaring excess of the two radiogenic isotopes <sup>129</sup>Xe/<sup>132</sup>Xe @ 2.5 and <sup>40</sup>Ar/<sup>36</sup>Ar @ 3000 enabled identification of MM (Mars Meteorites) because they are so different than any other major Solar System reservoir. Mars appears to have lost an original atmosphere of pressure 1 bar or greater, yet the ratio <sup>14</sup>N/<sup>15</sup>N indicates only a loss of a few millibar by Solar Wind Erosion. The LPARE (Large Planet Altering R-process Event) hypothesis attempts to explain these major isotopic puzzles at Mars by postulating that two massive, anomalous thermonuclear explosions, rich in R-process physics, occurred over the surface of Northern Mars in the past, approximately 500 million years ago, and that these explosions created the <sup>129</sup>Xe/<sup>132</sup>Xe excess, and the accompanying intense neutron bombardment of Mars atmosphere and regolith created the <sup>40</sup>Ar/<sup>36</sup>Ar excess off of potassium in the surface rocks. The collateral massive and non-mass fractionating atmospheric loss, and the intense neutron bombardment of <sup>14</sup>N in the atmosphere primarily created the <sup>14</sup>N/<sup>15</sup>N ratio we presently observe, with some mass fractionating erosion of the residual atmosphere. This LPARE hypothesis is found to explain other isotopic features of Mars atmosphere and surface. <sup>80</sup>Kr and <sup>82</sup>Kr are hyperabundant in the Mars atmosphere and in the youngest MMs indicating intense irradiation of Mars surface with neutrons. Although there is presently no plausible explanation for the nuclear events, the hypothesis can be tested through related nuclear products such as Pu-244.