Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bott...Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.展开更多
Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-te...Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.展开更多
The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected fr...The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.展开更多
To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollut...To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.展开更多
In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants ba...In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants based on Hakanson Potential Ecological Risk Indexes. According to the results, Hg was the primary heavy metal pollutant in Blue Economic Zone, followed by Cd, Cu, and Pb as prevalent pollutants. Heavy metals ranked in order of their pollution degrees are: Hg>Cd>Cu>Pb>Zn>Cr>As;the potential ecological risks of heavy metals follow the order of Hg>Cd>As>Pb>Cu>Cr>Zn. Heavy metal pollutions did exist in this region to a certain extent, and the percentage of potential ecological risk in “strong” and “severe” degree reached up to 13.75%. This composite risk characteristic was subject to the restriction of Hg and Cd mainly distributed in Laizhou-Zhaoyuan- Yantai, Muping-Rushan Goldmine, and other densely-populated regions, threatening the safety production of crops. The combined effects of geological background and human activities, e.g. gold mining and domestic pollutants, were the main causes of high potential ecological risks of heavy metals in local environment.展开更多
Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismical...Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.展开更多
Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical...Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical speciation of heavy metals. Xiawan Port, a typical region contaminated by industrial production, was selected as a case study area. The total concentrations and chemical speciation of heavy metals in sediments of Xiawan Port were analyzed. The experimental data indicate that Xiawan Port is seriously polluted by heavy metals, especially by Cd. The risks of heavy metals are evaluated by RI, RAC and MRI, respectively. The resluts of MRI show that the risks of heavy metals are in the decreasing order of Cd〉Pb〉Cu〉Zn. Comparison of results by different methods reveals that MRI integrates the characters of RI and RAC. MRI is recognized to be useful for risk managemnt of heavy metals in sediments.展开更多
A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the pres...Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.展开更多
The horizontal and vertical distribution characteristics of Pb in urban soil of Shenyang City, China were investigated in this study. The range of Pb concentration in the soil was 22.02-2910.60mg/kg. The standard devi...The horizontal and vertical distribution characteristics of Pb in urban soil of Shenyang City, China were investigated in this study. The range of Pb concentration in the soil was 22.02-2910.60mg/kg. The standard deviation was 443.07mg/kg, and coefficient of variation was 1.64. Tiexi District was seriously contaminated by lead. In general, Pb concentration in the soil decreased with distance from pollution source. Lead concentration varied in different functional areas with the order of industrial area>commercial area>residential area>suburb>reference area. Pb concentration decreased with the depth of soil profile. Both geo-accumulation index and ecological risk index were used to estimate the potential risk of soil Pb pollution in Shenyang City. The results showed that the high potential risk area included Tiexi District and traffic roads.展开更多
In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The ...In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The total concentration of Cd, Hg, Cu,Pb and As in the samples were analyzed.The potential ecological risk was used to evaluatethe heavy metals pollution.The investigation reveals that the reclaimed soils are contaminatedto a certain degree and the trace elements in coal gangue transferred to thesurface soil.The order of potential ecological risk is Cd>Hg>Cu>Pb>As; the pollution degreeof each sampling site is arranged in the following order: Xinzhuangzi Mine>DatongMine>Panyi Mine, and the multiform of heavy metals of potential ecological risk index is at357.35~484.62.展开更多
For lifetime non-smokers, lung cancer risk is mainly associated with inhalation exposure to air pollution. For the Chinese population, indoor air pollution due to solid fuel combustion has been the primary source of i...For lifetime non-smokers, lung cancer risk is mainly associated with inhalation exposure to air pollution. For the Chinese population, indoor air pollution due to solid fuel combustion has been the primary source of inhalation exposure for decades. Polycyclic aromatic hydrocarbons (PAHs) are the by-products of incomplete combustion.展开更多
While we studied pharmacokinetics of SM-12502 which was under development as an anti-PAF agent, we found three subjects showing a slow metabolic phenotype in its pharmacokinetics. Analyzing the genes for CYP2A6 from t...While we studied pharmacokinetics of SM-12502 which was under development as an anti-PAF agent, we found three subjects showing a slow metabolic phenotype in its pharmacokinetics. Analyzing the genes for CYP2A6 from the three subjects, we discovered that the three subjects possessed the whole CYP2A6 gene deletion (CYP2A6*4C), a novel genetic polymorphism of the CYP2A6 gene. Genetically engineered Salmonella YG7108 cells expressing human CYP2A6 or CYP2E1 together with the NADPH-CYP reductase were established in our laboratory to compare the mutagen-producing capacity of these enzymes for various N-nitrosamines. We found that CYP2E1 was responsible for the metabolic activation of N-nitrosamines with relatively short alkyl chains, whereas CYP2A6 was involved in the metabolic activation of N-nitrosamines possessing relatively bulky alkyl chains such as a tobacco-specific nitrosamine, NNK, which has been known to cause lung tumor in rodents. Thus, to examine a hypothesis that individuals possessing the CYP2A6*4C have the reduced risk of lung cancer due to the lack of the capacity of the metabolic activation of certain carcinogens in tobacco smoke, a case-control study was performed.展开更多
The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great sign...The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.展开更多
Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental acti...Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.展开更多
The pollution characteristics of Pb, Cd, Zn, Cu and Ni in soil of lead-zinc mining area were studied. The results indicate that the contamination degree followed the sequence of Cd〉Pb〉Zn〉Ni〉Cu and concentrations o...The pollution characteristics of Pb, Cd, Zn, Cu and Ni in soil of lead-zinc mining area were studied. The results indicate that the contamination degree followed the sequence of Cd〉Pb〉Zn〉Ni〉Cu and concentrations of Pb, Cd and Zn exceeded corresponding limits of the Chinese National Soil Environmental Quality Standard III. The soil was extremely polluted by Cd(Iego=5.26), moderately to heavily polluted by Zn(Iego=2.38), heavily to extremely polluted by Pb(Iego=4.13). The results of BCR three-step sequential extraction procedure show that the active Cd, Pb and Zn were relatively high and might exert adverse effects on the plants grown in the soil, while Cu and Ni existed in soil with a relatively stable form. Potential ecological risk results indicate that soils were engaging in a high potential ecological risk by pollution of Cd and should be given rise to concern.展开更多
The provision of water and sanitation services is a key challenge worldwide.The size,complexity,and critical nature of the water and wastewater infrastructure providing such services make the planning and management o...The provision of water and sanitation services is a key challenge worldwide.The size,complexity,and critical nature of the water and wastewater infrastructure providing such services make the planning and management of these systems extremely difficult.Following the digital revolution in many areas of our lives,the water sector has begun to benefit from digital transformation.Effective utilization of remotely sensed weather and soil moisture data for more efficient irrigation(i.e.,for food production),better detection of anomalies and faults in pipe networks using artificial intelligence,the use of nature-inspired optimization to improve the management and planning of systems,and greater use of digital twins and robotics all exhibit great potential to change and improve the ways in which complex water systems are managed.However,there are additional risks associated with these developments,including—but not limited to—cybersecurity,incorrect use,and overconfidence in the capability and accuracy of digital solutions and automation.This paper identifies key advances in digital technology that have found application in the water sector,and applies forensic engineering principles to failures that have been experienced in industries further ahead with automation and digital transformation.By iden-tifying what went wrong with new digital technologies that might have contributed to high-profile acci-dents in the car and aircraft industries(e.g.,Tesla self-driving cars and the Boeing 737 MAX),it is possible to identify similar risks in the water sector,learn from them,and prevent future failures.The key findings show that:①Automation will require“humans in the loop”;②human operators must be fully aware of the technology and trained to use it;③fallback manual intervention should be available in case of tech-nology malfunctioning;④while redundant sensors may be costly,they reduce the risks due to erroneous sensor readings;⑤cybersecurity risks must be considered;and⑥ethics issues have to be considered,given the increasing automation and interconnectedness of water systems.These findings also point to major research areas related to digital transformation in the water sector.展开更多
Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in...Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.展开更多
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
基金supported by the National Key R&D Program of China (No.2018YFC1800506)the Key R&D Program of Zhejiang Province (No.2020C03083)。
文摘Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.
文摘Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.
文摘The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.
文摘To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.
文摘In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants based on Hakanson Potential Ecological Risk Indexes. According to the results, Hg was the primary heavy metal pollutant in Blue Economic Zone, followed by Cd, Cu, and Pb as prevalent pollutants. Heavy metals ranked in order of their pollution degrees are: Hg>Cd>Cu>Pb>Zn>Cr>As;the potential ecological risks of heavy metals follow the order of Hg>Cd>As>Pb>Cu>Cr>Zn. Heavy metal pollutions did exist in this region to a certain extent, and the percentage of potential ecological risk in “strong” and “severe” degree reached up to 13.75%. This composite risk characteristic was subject to the restriction of Hg and Cd mainly distributed in Laizhou-Zhaoyuan- Yantai, Muping-Rushan Goldmine, and other densely-populated regions, threatening the safety production of crops. The combined effects of geological background and human activities, e.g. gold mining and domestic pollutants, were the main causes of high potential ecological risks of heavy metals in local environment.
文摘Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.
基金Projects (51039001, 50978087, 51009063, 50808071) supported by the National Natural Science Foundation of ChinaProject (SX2010-026) supported by State Council Three Gorges Project Construction Committee Executive Office,China+2 种基金Project (2009ZX07212-001) supported by Ministry of Environmental Protection of ChinaProject (BYHGLC-2010-02) supported by Guangzhou Water Authority,ChinaProject (CX2010B157) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical speciation of heavy metals. Xiawan Port, a typical region contaminated by industrial production, was selected as a case study area. The total concentrations and chemical speciation of heavy metals in sediments of Xiawan Port were analyzed. The experimental data indicate that Xiawan Port is seriously polluted by heavy metals, especially by Cd. The risks of heavy metals are evaluated by RI, RAC and MRI, respectively. The resluts of MRI show that the risks of heavy metals are in the decreasing order of Cd〉Pb〉Cu〉Zn. Comparison of results by different methods reveals that MRI integrates the characters of RI and RAC. MRI is recognized to be useful for risk managemnt of heavy metals in sediments.
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.
文摘Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171089), Knowledge InnovationProgram of Chinese Academy of Sciences (No. KZCX1-SW-19-4-01) and National Basic Research Program of China (No.2004CB418507)
文摘The horizontal and vertical distribution characteristics of Pb in urban soil of Shenyang City, China were investigated in this study. The range of Pb concentration in the soil was 22.02-2910.60mg/kg. The standard deviation was 443.07mg/kg, and coefficient of variation was 1.64. Tiexi District was seriously contaminated by lead. In general, Pb concentration in the soil decreased with distance from pollution source. Lead concentration varied in different functional areas with the order of industrial area>commercial area>residential area>suburb>reference area. Pb concentration decreased with the depth of soil profile. Both geo-accumulation index and ecological risk index were used to estimate the potential risk of soil Pb pollution in Shenyang City. The results showed that the high potential risk area included Tiexi District and traffic roads.
基金Supported by the Natural Science Foundation of China of Anhui Education to Research(KJ2009A088)
文摘In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The total concentration of Cd, Hg, Cu,Pb and As in the samples were analyzed.The potential ecological risk was used to evaluatethe heavy metals pollution.The investigation reveals that the reclaimed soils are contaminatedto a certain degree and the trace elements in coal gangue transferred to thesurface soil.The order of potential ecological risk is Cd>Hg>Cu>Pb>As; the pollution degreeof each sampling site is arranged in the following order: Xinzhuangzi Mine>DatongMine>Panyi Mine, and the multiform of heavy metals of potential ecological risk index is at357.35~484.62.
基金funded by the National Natural Science Foundation of China(41390240 and 41571130010)the 111 Project(B14001)
文摘For lifetime non-smokers, lung cancer risk is mainly associated with inhalation exposure to air pollution. For the Chinese population, indoor air pollution due to solid fuel combustion has been the primary source of inhalation exposure for decades. Polycyclic aromatic hydrocarbons (PAHs) are the by-products of incomplete combustion.
文摘While we studied pharmacokinetics of SM-12502 which was under development as an anti-PAF agent, we found three subjects showing a slow metabolic phenotype in its pharmacokinetics. Analyzing the genes for CYP2A6 from the three subjects, we discovered that the three subjects possessed the whole CYP2A6 gene deletion (CYP2A6*4C), a novel genetic polymorphism of the CYP2A6 gene. Genetically engineered Salmonella YG7108 cells expressing human CYP2A6 or CYP2E1 together with the NADPH-CYP reductase were established in our laboratory to compare the mutagen-producing capacity of these enzymes for various N-nitrosamines. We found that CYP2E1 was responsible for the metabolic activation of N-nitrosamines with relatively short alkyl chains, whereas CYP2A6 was involved in the metabolic activation of N-nitrosamines possessing relatively bulky alkyl chains such as a tobacco-specific nitrosamine, NNK, which has been known to cause lung tumor in rodents. Thus, to examine a hypothesis that individuals possessing the CYP2A6*4C have the reduced risk of lung cancer due to the lack of the capacity of the metabolic activation of certain carcinogens in tobacco smoke, a case-control study was performed.
基金supported by the Science and Technology Research Project to Henan Provincial Department of Natural Resources(Henan Natural Resources Letter[2019]373–10)。
文摘The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.
基金Project(50925417) supported by the National Natural Science Funds for Distinguished Young Scholar of ChinaProject(2010AA065203) supported by the High Technology Research and Development Program of China+2 种基金Project(2010-609) Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(ncet-10-0840) supported by Program for New Century Excellent Talents in UniversityProject(2012FJ1080) supported by Key Projects of Science and Technology of Hunan Province,China
文摘Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
基金Project(2012FJ1010)supported by the National Science and Technology Major Project,ChinaProject(2012BAC09B04)supported by the National"Twelfth Five-Year"Plan for Science&Technology,ChinaProject(2012AA06202)supported by the National High-tech Research and Development Program of China
文摘The pollution characteristics of Pb, Cd, Zn, Cu and Ni in soil of lead-zinc mining area were studied. The results indicate that the contamination degree followed the sequence of Cd〉Pb〉Zn〉Ni〉Cu and concentrations of Pb, Cd and Zn exceeded corresponding limits of the Chinese National Soil Environmental Quality Standard III. The soil was extremely polluted by Cd(Iego=5.26), moderately to heavily polluted by Zn(Iego=2.38), heavily to extremely polluted by Pb(Iego=4.13). The results of BCR three-step sequential extraction procedure show that the active Cd, Pb and Zn were relatively high and might exert adverse effects on the plants grown in the soil, while Cu and Ni existed in soil with a relatively stable form. Potential ecological risk results indicate that soils were engaging in a high potential ecological risk by pollution of Cd and should be given rise to concern.
文摘The provision of water and sanitation services is a key challenge worldwide.The size,complexity,and critical nature of the water and wastewater infrastructure providing such services make the planning and management of these systems extremely difficult.Following the digital revolution in many areas of our lives,the water sector has begun to benefit from digital transformation.Effective utilization of remotely sensed weather and soil moisture data for more efficient irrigation(i.e.,for food production),better detection of anomalies and faults in pipe networks using artificial intelligence,the use of nature-inspired optimization to improve the management and planning of systems,and greater use of digital twins and robotics all exhibit great potential to change and improve the ways in which complex water systems are managed.However,there are additional risks associated with these developments,including—but not limited to—cybersecurity,incorrect use,and overconfidence in the capability and accuracy of digital solutions and automation.This paper identifies key advances in digital technology that have found application in the water sector,and applies forensic engineering principles to failures that have been experienced in industries further ahead with automation and digital transformation.By iden-tifying what went wrong with new digital technologies that might have contributed to high-profile acci-dents in the car and aircraft industries(e.g.,Tesla self-driving cars and the Boeing 737 MAX),it is possible to identify similar risks in the water sector,learn from them,and prevent future failures.The key findings show that:①Automation will require“humans in the loop”;②human operators must be fully aware of the technology and trained to use it;③fallback manual intervention should be available in case of tech-nology malfunctioning;④while redundant sensors may be costly,they reduce the risks due to erroneous sensor readings;⑤cybersecurity risks must be considered;and⑥ethics issues have to be considered,given the increasing automation and interconnectedness of water systems.These findings also point to major research areas related to digital transformation in the water sector.
基金Project(1212010741003)supported by the Ministry of Land and Resources of ChinaProject(SJ08-ZT08)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(NCET-07-0694)supported by Program for University Talents in the NewCentury,China
文摘Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.