The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculat...The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,展开更多
Talinopsis frutescens(Anacampserotaceae,a family that is close related to Cactaceae)is a succulent species endemic to North America.The aim of this study was to explore,using Ecological Niche Modeling(ENM),changes in ...Talinopsis frutescens(Anacampserotaceae,a family that is close related to Cactaceae)is a succulent species endemic to North America.The aim of this study was to explore,using Ecological Niche Modeling(ENM),changes in potential distribution ranges considering different climate scenarios:past conditions during the Last Inter Glacial(LIG)and the Last Glacial Maximum(LGM),the present and projections for 2070(RCP 2.6 to 8.5).A pattern of contraction is observed during the LIG,which agrees with other studies focused in species from arid environments.This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario.All future projections show the same contraction and fragmentation patterns,resulting in three discontinuous areas:the northern part of the Chihuahuan Desert,the southern-central part of the Mexican Plateau,and the smallest one in the Tehuacán-Cuicatlán Valley.Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.展开更多
In this paper the charge transfer and variation of potential distribution upon formation of 4, 4'-bipyridine molecular junction have been investigated by applying hybrid density-functional theory (B3LYP) at ab init...In this paper the charge transfer and variation of potential distribution upon formation of 4, 4'-bipyridine molecular junction have been investigated by applying hybrid density-functional theory (B3LYP) at ab initio level. The numerical results show that there exist charge-accumulation and charge-depletion regions located at respective inside and outside of interfaces. The variation of potential distribution is obvious at interfaces. When distance between electrodes is changed, the charge transfer and variation of potential distribution clearly have distance-dependent performance. It is demonstrated that the contact structure between the molecule and electrodes is another key factor for dominating the properties of molecular junction. The qualitative explanation for experimental results is suggested.展开更多
Global food security is threatened by the impacts of the spread of crop pests and changes in the complex interactions between crops and pests under climate change.Schrankia costaestrigalis is a newly-reported potato p...Global food security is threatened by the impacts of the spread of crop pests and changes in the complex interactions between crops and pests under climate change.Schrankia costaestrigalis is a newly-reported potato pest in southern China.Early-warning monitoring of this insect pest could protect domestic agriculture as it has already caused regional yield reduction and/or quality decline in potato production.Our research aimed to confirm the potential geographical distributions(PGDs)of S.costaestrigalis in China under different climate scenarios using an optimal MaxEnt model,and to provide baseline data for preventing agricultural damage by S.costaestrigalis.Our findings indicated that the accuracy of the optimal MaxEnt model was better than the default-setting model,and the minimum temperature of the coldest month,precipitation of the driest month,precipitation of the coldest quarter,and the human influence index were the variables significantly affecting the PGDs of S.costaestrigalis.The highly-and moderately-suitable habitats of S.costaestrigalis were mainly located in eastern and southern China.The PGDs of S.costaestrigalis in China will decrease under climate change.The conversion of the highly-to moderately-suitable habitat will also be significant under climate change.The centroid of the suitable habitat area of S.costaestrigalis under the current climate showed a general tendency to move northeast and to the middle-high latitudes in the 2030s.The agricultural practice of plastic film mulching in potato fields will provide a favorable microclimate for S.costaestrigalis in the suitable areas.More attention should be paid to the early warning and monitoring of S.costaestrigalis in order to prevent its further spread in the main areas in China’s winter potato planting regions.展开更多
Climate change has affected and will continue to affect the spatial distribution patterns of marine organisms.To understand the impact of climate change on the distribution patterns and species richness of the Sciaeni...Climate change has affected and will continue to affect the spatial distribution patterns of marine organisms.To understand the impact of climate change on the distribution patterns and species richness of the Sciaenidae in China’s coastal waters,the maximum entropy model was used to combine six environmental factors and predict the potential distribution of 12 major species of Sciaenidae by 2050s under Representative Concentration Pathways(RCPs)2.6 and 8.5.The results showed that the average area under the receiver operating characteristic curve of the model was 0.917,indicating that the model predictions were accurate and reliable.The main driving factors affecting the potential distribution of these fishes were dissolved oxygen,salinity,and sea surface temperature(SST).There was an overall northward shift in the potential habitat areas of these fishes under the two climate scenarios.The total potential habitat areas of Larimichthys polyactis,Pennahia argentata,and Pennahia pawak decreased under both climate scenarios,while the total habitat area of Johnius belengerii,Pennahia anea,Miichthys miiuy,Collichthys lucidus,and Collichthys niveatus increased,suggesting that these might be loser and winner species,respectively.The expansion rate,contraction rate,degree of centroid change,and species richness in the potential habitats were generally more significant under RCP8.5 than RCP2.6.The mean shift rates of the potential distribution were 41.50 km/(10 a) and 29.20 km/(10 a) under RCP8.5 and RCP2.6,respectively.The changes in Sciaenidae species richness under climate change were bounded by the Changjiang River Estuary waters,with obvious north-south differences.Some waters with increased species richness may become refuges for Sciaenidae fishes under climate change.The richness and habitat area change rate of some aquatic germplasm resources will decrease,meanings that these reserves are more sensitive to climate change,and more attention should be paid to the potential challenges and opportunities for fishery managers.This study may provide a scientific basis for the management and conservation of Sciaenidae in China under climate change.展开更多
Climate change poses a serious long-term threat to biodiversity.To effectively reduce biodiversity loss,conservationists need to have a thorough understanding of the preferred habitats of species and the variables tha...Climate change poses a serious long-term threat to biodiversity.To effectively reduce biodiversity loss,conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution.Therefore,predicting the impact of climate change on speciesappropriate habitats may help mitigate the potential threats to biodiversity distribution.Xerophyta,a monocotyledonous genus of the family Velloziaceae is native to mainland Africa,Madagascar,and the Arabian Peninsula.The key drivers of Xerophyta habitat distribution and preference are unknown.Using 308 species occurrence data and eight environmental variables,the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past,current and future climate change scenarios.The results showed that the models had a good predictive ability(Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902),indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species.The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter(Bio9)and precipitation of the warmest quarter(Bio18).According to our models,tropical Africa has zones of moderate and high suitability for Xerophyta taxa,which is consistent with the majority of documented species localities.The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario,with most species experiencing a range loss greater than the range gain regardless of the climate scenario.The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.展开更多
Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-...Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.展开更多
Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although ...Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although these pests have not established in China,precautions must be taken due to their highly destructive nature.Thus,we predicted the potential geographic distribution of B.bryoniae and B.neohumeralis across the world and in particular China by ecological niche modeling of the Maximum Entropy(Max Ent)model with the occurrence records of these two species.Bactrocera bryoniae and B.neohumeralis exhibit similar potential geographic distribution ranges across the world and in China,and each species was predicted to be able to distribute to over 20%of the globe.Globally,the potential geographic distribution ranges for these two fruit fly species included southern Asia,the central and the southeast coast of Africa,southern North America,northern and central South America,and Australia.While within China,most of the southern Yangtze River area was found suitable for these species.Notably,southern China was considered to have the highest risk of B.bryoniae and B.neohumeralis invasions.Our study identifies the regions at high risk for potential establishment of B.bryoniae and B.neohumeralis in the world and in particular China,and informs the development of inspection and biosecurity/quarantine measures to prevent and control their invasions.展开更多
Alien invasive species represent a severe risk to biodiversity and economy, as in the case of fire blight (Erwinia amylovora), a bacterial disease that originated in North America, which may be released into new loc...Alien invasive species represent a severe risk to biodiversity and economy, as in the case of fire blight (Erwinia amylovora), a bacterial disease that originated in North America, which may be released into new locations by means of fruit trade. On the basis of the knowledge of Erwinia amylovora's biophysical characteristics and environmental data, the geographic information system (GIS) has been applied to determine areas where Erwinia amylovora can potentially invade China. Temperature and precipitation, during the blossoming period, are considered to be two critical factors affecting the Erwinia amylovora's suitable climatic zones. This spatial modeling approach was validated from a case study in Europe, where the occurrence of Erwinia amylovora has been proven. The model prediction agreed with the occurrence of the bacteria recorded in Europe, and the same procedure has been applied to produce a potential establishment area in China's two preferential apple cultivation regions, Bohai Bay region and Huangtu Altiplano region. It has been found that areas belonging to the high-risk category are more or less the main apple producing areas, accounting for their great economic importance in China. This methodology provides an initial baseline for assessment, prevention, and management of alien species that may become invasive under certain environmental conditions. In addition, this modeling approach provides a tool for policy makers to use, in making decisions on management practices where alien species are involved.展开更多
Madagascar,a globally renowned biodiversity hotspot characterized by high rates of endemism,is one of the few remaining refugia for many plants and animal species.However,global climate change has greatly affected the...Madagascar,a globally renowned biodiversity hotspot characterized by high rates of endemism,is one of the few remaining refugia for many plants and animal species.However,global climate change has greatly affected the natural ecosystem and endemic species living in Madagascar,and will likely continue to influence species distribution in the future.Madagascar is home to six endemic baobab(Adansonia spp.,Bombacoideae[Malvaceae])species(Adansonia grandidieri,A.suarezensis,A.madagascariensis,A.perrieri,A.rubrostipa,A.za),which are remarkable and endangered plants.This study aimed to model the current distribution of suitable habitat for each baobab species endemic to Madagascar and determine the effect that climate change will have on suitable baobab habitat by the years 2050 and 2070.The distribution was modeled using MaxEnt based on locality information of 245 occurrence sites of six species from both online database and our own field work.A total of seven climatic variables were used for the modeling process.The present distribution of all six Madagascar's baobabs was largely influenced by temperature-related factors.Although both expansion and contraction of suitable habitat are predicted for all species,loss of original suitable habitat is predicted to be extensive.For the most widespread Madagascar baobab,A.za,more than 40%of its original habitat is predicted to be lost because of climate change.Based on these findings,we recommend that areas predicted to contract in response to climate change should be designated key protection regions for baobab conservation.展开更多
Due to the influence of human activities such as cultivation and urban construction,the ecosystem of the Yellow River Basin(YRB)is subjected to increased vulnerability and even potential risk of destruction.Ecological...Due to the influence of human activities such as cultivation and urban construction,the ecosystem of the Yellow River Basin(YRB)is subjected to increased vulnerability and even potential risk of destruction.Ecological restoration has led to an increase in vegetation,but excessive afforestation conversely results in low survival rate of trees,water shortages,and biodiversity loss.It is of great significance for achieving sustainable development of forests to reasonable revegetation in the region.At present,the potential distribution pattern of dominant species and their mixed forms in the basin has not been effectively studied.This study simulated the potential distribution of dominant vegetation in the YRB based on Maximum Entropy(Max Ent)and Genetic Algorithm for Rule-Set Prediction(GARP)and explored the impact of human interference on it by employing land use as the environmental filter to distinguish the regions of human activities.We further predicted the potential distribution of typically mixed forests and discussed their human interference.The main results are as follows:(1)Except for Caragana korshinskii,all models had good above performance(0.7<the mean AUC<1).Except for Caragana korshinskii,the area under the curve(AUC)for 90%of the models indicated that Max Ent performed better than GARP,and Max Ent easily lead to over-fitting while GARP predicted a wider range.(2)Except for Nitraria tangutorum,the dominant types of vegetation such as Pinus tabulaeformis,Platycladus orientalis,and Hippophae rhamnoides mainly distributed in southern Gansu,Shaanxi,and south-central Shanxi.Among them,the largest suitable area of Artemisia gmelinii and Stipa bungeana(High suitable area)were approximately 56.7×104 km2(38.8%)and 54.7×104 km2(28.5%)with the area occupied by large-scale cultivation being 17.5×104 km2(39.4%)and 18.9×104 km2(48%),respectively,which indicated human activities caused great damage to the core growth regions of these vegetation.(3)Mean temperature of coldest quarter or month mainly constrained the growth of most vegetation in the YRB in terms of temperature,while precipitation of wettest/driest month is one of the dominant factors.However,some vegetation responded differently to other meteorological factors due to niche differences.(4)Most of the mixed forests were distributed in southern Gansu,Shaanxi,and Shanxi provinces;its middle and high suitable areas were mainly concentrated in Shaanxi and southern and central Shanxi,where the cultivated land had occupied most of them.Therefore,the results showed that the restoration of herbaceous vegetation such as Artemisia gmelinii and Stipa bungeana has a high potential and it is appropriate that the measures for afforestation should be concentrated in the areas like the lower reaches of the Weihe,Jinghe,and Beiluo rivers and Luliang Mountain,where the cultivated land overlaps with the high suitable areas of the corresponding vegetation and the mixed forests with less water consumption and wide distribution,such as Caragana korshinskii-Hippophae rhamnoides,Pinus tabulaeformis-Quercus liaotungensis,and Ostryopsis davidiana-Stipa bungeana-Hippophae rhamnoides.The results of this study can provide effective guidance for mixed forest plantations and vegetation conservation in the YRB.展开更多
Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solution...Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.展开更多
Antarctic krill is the key species of ecological system in the Amundsen Sea.At present,the suitable distribution is unobtainable by scientifi c surveys or data from the fi shery.In this paper,the maximum entropy algor...Antarctic krill is the key species of ecological system in the Amundsen Sea.At present,the suitable distribution is unobtainable by scientifi c surveys or data from the fi shery.In this paper,the maximum entropy algorithm(Maxent)was used to obtain the potential distribution of adult Antarctic krill in order to provide useful information and reasonable reference for the policy on protecting potential krill habitats around the Amundsen Sea.Occurrence points and 17 environmental variables were used to simulate the distributions.Results show that the high and moderate suitable habitats lie between 65°S and 72°S in the Amundsen Sea.The high suitable habitat accounts for 8.1%of the total area of the Amundsen Sea.The sea ice persistence(ICE),total phytoplankton(PHYC),and the minimum value of dissolved iron(Fe_min)are the three dominant contributors to the model.Results from the response curves show that Antarctic krill preferred habitats with ICE of 0.42-0.93,PHYC of 2.48-2.77 mmol/m^(3) and Fe_min of(7.10×10^(-5))-(9.45×10^(-5))mmol/m 3.Positive trends existed in the PHYC of the high and moderate suitable habitat,and a positive trend existed in the Fe_min of moderate suitable habitat.However,the probability of presence of Antarctic krill will decrease if the increase of the PHYC and Fe_min continues.展开更多
The discoveries of binary asteroids have opened an important new field of research concerning the calculation of potential generated by irregular bodies.Some of them have an elongated shape.A simple model to describe ...The discoveries of binary asteroids have opened an important new field of research concerning the calculation of potential generated by irregular bodies.Some of them have an elongated shape.A simple model to describe the motion of a test particle in that kind of potential requires consideration of a finite homogeneous straight segment.We construct this model by adding an inhomogeneous distribution of mass. To be consistent with the geometrical shape of the asteroid,we explore a parabolic profile of the density.We establish the closed analytical form of the potential generated by this inhomogeneous massive segment.The study of the dynamical behavior is fulfilled by the use of Lagrangian formulation,which allows us to calculate some two and three dimensional orbits.展开更多
Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of...Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of the host through its boring activity;it can also be a vector of various pathogenic fungi. This study was conducted to investigate the environmental variables limiting the distribution of H. ligniperda and the change trend of its suitable areas under climate change.Results: We used a maximum entropy model to predict the potential geographical distribution of H. ligniperda on a global scale under near current and future climatic scenarios using its occurrence data and environmental variables. The result shows that the areas surrounding the Mediterranean region, the eastern coastal areas of Asia, and the southeastern part of Oceania are highly suitable for H. ligniperda. The environmental variables with the greatest effect on the distribution of H. ligniperda were determined using the jackknife method and Pearson’s correlation analysis and included the monthly average maximum temperature in April, precipitation of driest quarter, the monthly average minimum temperature in December, precipitation of coldest quarter, mean temperature of driest quarter and mean diurnal range.Conclusions: Excessive precipitation in winter and low temperatures in spring had a great effect on the distribution of H. ligniperda. The potential geographical distribution of H. ligniperda was predicted to change under future climatic conditions compared with near current climate conditions. Highly suitable areas, moderately suitable areas and low suitable areas were predicted to increase by 59.99%, 44.43% and 22.92%, respectively, under the2081–2100 ssp245 scenario.展开更多
Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a unifor...Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.展开更多
[Objective] The aim was to effectively monitor and manage oriental fruit fly.[Method] Maxent model and ArcGIS were used to predict potential geographic distributions of the oriental fruit fly based on associations bet...[Objective] The aim was to effectively monitor and manage oriental fruit fly.[Method] Maxent model and ArcGIS were used to predict potential geographic distributions of the oriental fruit fly based on associations between known occurrence records and a set of environmental variables.[Result] The suitable areas for Bactrocera dorsalis infestations were mainly restricted to central and southern Jiangxi Province,with Latitude ranged from 24 to 28°N.Northeast Jiangxi,Northwest Jiangxi and the regions bording upon Yangtse River were predicted as unsuitable for Bactrocera dorsalis.The fit for the model as measured by AUC was high,with value of 0.978 for the training data and 0.965 for the test data,indicating the high level of discriminatory power for the Maxent.A jackknife test in Maxent indicated that mean temperature of coldest quarter with highest gain value was the most important environmental variable that restricted the expansion to north Jiangxi Province.[Conclusion] Further research into the biology of the species and their ability to overcome barriers was necessary to explain niche differentiation and better understand invasion risk.展开更多
Based on Maxent niche model and combined with ArcGIS,the suitable area range for Quadrastichus erythrinae Kim in China was predicted in the paper.The results showed that high suitable area for Q. erythrinae in China i...Based on Maxent niche model and combined with ArcGIS,the suitable area range for Quadrastichus erythrinae Kim in China was predicted in the paper.The results showed that high suitable area for Q. erythrinae in China included most northeast coastal areas of Hainan Island,partial southern coastal area of Guangdong Province,partial northwestern coastal area and partial southeast coastal area of Taiwan Island; moderate suitable area included partial area of Hainan,some contiguous areas of Guangxi and Guangdong,most areas of Guangdong,partial area of Fujian and Taiwan; low suitable area included partial area from northwestern coast to inland of Hainan Island,west coastal area of Taiwan Island,most area in Guangxi,partial areas in Guangdong,Fujian and Yunnan.展开更多
Alexandrium minutum from the China Sea produces a range of toxins and causes damage to the local ecosystems and aquaculture.This is essential to understand environmental factors affecting potential distribution.Potent...Alexandrium minutum from the China Sea produces a range of toxins and causes damage to the local ecosystems and aquaculture.This is essential to understand environmental factors affecting potential distribution.Potential distributions of A.minutum in the China Sea were predicted based on maximum entropy modeling,and dominant environmental variables were studied through analyses of variable contributions and response curves.The results showed that highly suitable areas were mainly located in the southwest of the Yellow Sea,the Laizhou Bay,and north of Haizhou Bay.The coast of the South China Sea was predicted as a low-suitability area,and the coast of the East China Sea as an unsuitable area.Mean temperature of the coldest month(T_min)had the largest drop in permutation importance but a low percent contribution.The probability of presence of A.minutum increased with increasing concentration of nitrate(NO3−)and annual mean temperature(T_ann)over a wide range of them.The response curves decreased with increasing concentration of phosphate(PO43−)and ratio of NO_(3)^(−)to PO_(4)^(3−)(N_P_ratio)when PO_(4)^(3)−is above 0.049μmolL^(-1) and N_P_ratio above 4,indicating that low values of PO_(4)^(3−) concentration and N_P_ratio favour the occurrence of A.minutum.As a predictor,the variance of annual temperature(T_Var)had the highest percent contribution and gains.PO_(4)^(3−) was predicted to have much more information than the other variables,and exhibited the second largest drop in permutation importance and percent contribution.The T_Var and PO_(4)^(3−) are the most important dominant predictor variables.展开更多
Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials an...Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials and their boundary needs to be monitored from time to time.An automatic measurement technic is presented in the paper to substitute for the traditional manual measurement work that is dull,poor efficiency and dangerous for operators.The boundary forming mechanism is analyzed,the vertical profile of electric potential is simulated,an automatic instrument is developed to sense the potential distribution,and a strategy is provided to identify the boundary according to the potential curves.Finally,some practical results are compared with manual measurements,which shows good consistency.展开更多
基金Natural Science Foundation of Guangdong Province (No. 36566)
文摘The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,
基金partially funded by the National Council of Science and Technology, Mexico (PhD scholarship 436041)the Cactus and Succulent Society of America grantsupported by the Educational Professional Development Program (#UAA-PTC-169) granted to the corresponding author by the Public Education Department and the Autonomous University of Aguascalientes, Mexico
文摘Talinopsis frutescens(Anacampserotaceae,a family that is close related to Cactaceae)is a succulent species endemic to North America.The aim of this study was to explore,using Ecological Niche Modeling(ENM),changes in potential distribution ranges considering different climate scenarios:past conditions during the Last Inter Glacial(LIG)and the Last Glacial Maximum(LGM),the present and projections for 2070(RCP 2.6 to 8.5).A pattern of contraction is observed during the LIG,which agrees with other studies focused in species from arid environments.This pattern was followed by a migration towards the south during the LGM and a possible recent expansion to the north as is observed in the present scenario.All future projections show the same contraction and fragmentation patterns,resulting in three discontinuous areas:the northern part of the Chihuahuan Desert,the southern-central part of the Mexican Plateau,and the smallest one in the Tehuacán-Cuicatlán Valley.Our projections for future scenarios agree with other studies and support that global climate change tends to alter the current distribution of arid environment species.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674084), the Natural Science Foundation of Shandong Province, China (Grant No Y2004A08) and the Doctorate Foundation of the State Education Ministry of China (Grant No 20040445001).
文摘In this paper the charge transfer and variation of potential distribution upon formation of 4, 4'-bipyridine molecular junction have been investigated by applying hybrid density-functional theory (B3LYP) at ab initio level. The numerical results show that there exist charge-accumulation and charge-depletion regions located at respective inside and outside of interfaces. The variation of potential distribution is obvious at interfaces. When distance between electrodes is changed, the charge transfer and variation of potential distribution clearly have distance-dependent performance. It is demonstrated that the contact structure between the molecule and electrodes is another key factor for dominating the properties of molecular junction. The qualitative explanation for experimental results is suggested.
基金supported by the National Key R&D Program of China(2021YFC2600400 and 2021YFD1400100)。
文摘Global food security is threatened by the impacts of the spread of crop pests and changes in the complex interactions between crops and pests under climate change.Schrankia costaestrigalis is a newly-reported potato pest in southern China.Early-warning monitoring of this insect pest could protect domestic agriculture as it has already caused regional yield reduction and/or quality decline in potato production.Our research aimed to confirm the potential geographical distributions(PGDs)of S.costaestrigalis in China under different climate scenarios using an optimal MaxEnt model,and to provide baseline data for preventing agricultural damage by S.costaestrigalis.Our findings indicated that the accuracy of the optimal MaxEnt model was better than the default-setting model,and the minimum temperature of the coldest month,precipitation of the driest month,precipitation of the coldest quarter,and the human influence index were the variables significantly affecting the PGDs of S.costaestrigalis.The highly-and moderately-suitable habitats of S.costaestrigalis were mainly located in eastern and southern China.The PGDs of S.costaestrigalis in China will decrease under climate change.The conversion of the highly-to moderately-suitable habitat will also be significant under climate change.The centroid of the suitable habitat area of S.costaestrigalis under the current climate showed a general tendency to move northeast and to the middle-high latitudes in the 2030s.The agricultural practice of plastic film mulching in potato fields will provide a favorable microclimate for S.costaestrigalis in the suitable areas.More attention should be paid to the early warning and monitoring of S.costaestrigalis in order to prevent its further spread in the main areas in China’s winter potato planting regions.
基金The Xiamen Youth Innovation Fund under contract No.3502Z20206096the National Key Research and Development Program of China under contract No.2019YFE0124700+1 种基金the National Natural Science Foundation of China under contract Nos 42176153,41906127,and 42076163the National Program on Global Change and Air-Sea Interaction under contract No.HR01-200701.
文摘Climate change has affected and will continue to affect the spatial distribution patterns of marine organisms.To understand the impact of climate change on the distribution patterns and species richness of the Sciaenidae in China’s coastal waters,the maximum entropy model was used to combine six environmental factors and predict the potential distribution of 12 major species of Sciaenidae by 2050s under Representative Concentration Pathways(RCPs)2.6 and 8.5.The results showed that the average area under the receiver operating characteristic curve of the model was 0.917,indicating that the model predictions were accurate and reliable.The main driving factors affecting the potential distribution of these fishes were dissolved oxygen,salinity,and sea surface temperature(SST).There was an overall northward shift in the potential habitat areas of these fishes under the two climate scenarios.The total potential habitat areas of Larimichthys polyactis,Pennahia argentata,and Pennahia pawak decreased under both climate scenarios,while the total habitat area of Johnius belengerii,Pennahia anea,Miichthys miiuy,Collichthys lucidus,and Collichthys niveatus increased,suggesting that these might be loser and winner species,respectively.The expansion rate,contraction rate,degree of centroid change,and species richness in the potential habitats were generally more significant under RCP8.5 than RCP2.6.The mean shift rates of the potential distribution were 41.50 km/(10 a) and 29.20 km/(10 a) under RCP8.5 and RCP2.6,respectively.The changes in Sciaenidae species richness under climate change were bounded by the Changjiang River Estuary waters,with obvious north-south differences.Some waters with increased species richness may become refuges for Sciaenidae fishes under climate change.The richness and habitat area change rate of some aquatic germplasm resources will decrease,meanings that these reserves are more sensitive to climate change,and more attention should be paid to the potential challenges and opportunities for fishery managers.This study may provide a scientific basis for the management and conservation of Sciaenidae in China under climate change.
基金supported by grants from the International Partnership Program of Chinese Academy of Sciences (151853KYSB20190027)Sino-Africa Joint Research Center, CAS (SAJC202101)The ANSO Scholarship for Young Talents, PhD Fellowship Program University of Chinese Academy of Sciences, China
文摘Climate change poses a serious long-term threat to biodiversity.To effectively reduce biodiversity loss,conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution.Therefore,predicting the impact of climate change on speciesappropriate habitats may help mitigate the potential threats to biodiversity distribution.Xerophyta,a monocotyledonous genus of the family Velloziaceae is native to mainland Africa,Madagascar,and the Arabian Peninsula.The key drivers of Xerophyta habitat distribution and preference are unknown.Using 308 species occurrence data and eight environmental variables,the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past,current and future climate change scenarios.The results showed that the models had a good predictive ability(Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902),indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species.The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter(Bio9)and precipitation of the warmest quarter(Bio18).According to our models,tropical Africa has zones of moderate and high suitability for Xerophyta taxa,which is consistent with the majority of documented species localities.The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario,with most species experiencing a range loss greater than the range gain regardless of the climate scenario.The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.
基金Under the auspices of National Basic Research Program of China (No.2010CB951704)Institutional Consolidation for Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex (No.76444-000)External Cooperation Program of Chinese Academy of Sciences (No.GJHZ0954)
文摘Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.
基金supported by the National Key R&D Program of China(2017YFC1200600 and 2016YFC1202104)the Innovation Team of Modern Agricultural Industry Generic Key Technology R&D of Guangdong Province,China(2019KJ134)+1 种基金the Open Fund of the Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests,China(2016-KF-3)A student scholarship was provided by the Harry Butler Institute,Murdoch University,Australia。
文摘Bactrocera bryoniae and Bactrocera neohumeralis are highly destructive and major biosecurity/quarantine pests of fruit and vegetable in the tropical and subtropical regions in the South Pacific and Australia.Although these pests have not established in China,precautions must be taken due to their highly destructive nature.Thus,we predicted the potential geographic distribution of B.bryoniae and B.neohumeralis across the world and in particular China by ecological niche modeling of the Maximum Entropy(Max Ent)model with the occurrence records of these two species.Bactrocera bryoniae and B.neohumeralis exhibit similar potential geographic distribution ranges across the world and in China,and each species was predicted to be able to distribute to over 20%of the globe.Globally,the potential geographic distribution ranges for these two fruit fly species included southern Asia,the central and the southeast coast of Africa,southern North America,northern and central South America,and Australia.While within China,most of the southern Yangtze River area was found suitable for these species.Notably,southern China was considered to have the highest risk of B.bryoniae and B.neohumeralis invasions.Our study identifies the regions at high risk for potential establishment of B.bryoniae and B.neohumeralis in the world and in particular China,and informs the development of inspection and biosecurity/quarantine measures to prevent and control their invasions.
文摘Alien invasive species represent a severe risk to biodiversity and economy, as in the case of fire blight (Erwinia amylovora), a bacterial disease that originated in North America, which may be released into new locations by means of fruit trade. On the basis of the knowledge of Erwinia amylovora's biophysical characteristics and environmental data, the geographic information system (GIS) has been applied to determine areas where Erwinia amylovora can potentially invade China. Temperature and precipitation, during the blossoming period, are considered to be two critical factors affecting the Erwinia amylovora's suitable climatic zones. This spatial modeling approach was validated from a case study in Europe, where the occurrence of Erwinia amylovora has been proven. The model prediction agreed with the occurrence of the bacteria recorded in Europe, and the same procedure has been applied to produce a potential establishment area in China's two preferential apple cultivation regions, Bohai Bay region and Huangtu Altiplano region. It has been found that areas belonging to the high-risk category are more or less the main apple producing areas, accounting for their great economic importance in China. This methodology provides an initial baseline for assessment, prevention, and management of alien species that may become invasive under certain environmental conditions. In addition, this modeling approach provides a tool for policy makers to use, in making decisions on management practices where alien species are involved.
基金This study was supported by the funds from Sino-Africa Joint Research Center,CAS,China(Y323771W07 and SAJC201322)National Natural Science Foundation of China(31800176).
文摘Madagascar,a globally renowned biodiversity hotspot characterized by high rates of endemism,is one of the few remaining refugia for many plants and animal species.However,global climate change has greatly affected the natural ecosystem and endemic species living in Madagascar,and will likely continue to influence species distribution in the future.Madagascar is home to six endemic baobab(Adansonia spp.,Bombacoideae[Malvaceae])species(Adansonia grandidieri,A.suarezensis,A.madagascariensis,A.perrieri,A.rubrostipa,A.za),which are remarkable and endangered plants.This study aimed to model the current distribution of suitable habitat for each baobab species endemic to Madagascar and determine the effect that climate change will have on suitable baobab habitat by the years 2050 and 2070.The distribution was modeled using MaxEnt based on locality information of 245 occurrence sites of six species from both online database and our own field work.A total of seven climatic variables were used for the modeling process.The present distribution of all six Madagascar's baobabs was largely influenced by temperature-related factors.Although both expansion and contraction of suitable habitat are predicted for all species,loss of original suitable habitat is predicted to be extensive.For the most widespread Madagascar baobab,A.za,more than 40%of its original habitat is predicted to be lost because of climate change.Based on these findings,we recommend that areas predicted to contract in response to climate change should be designated key protection regions for baobab conservation.
基金performed in the framework of the National Science Fund for Distinguished Young Scholars(31700370)。
文摘Due to the influence of human activities such as cultivation and urban construction,the ecosystem of the Yellow River Basin(YRB)is subjected to increased vulnerability and even potential risk of destruction.Ecological restoration has led to an increase in vegetation,but excessive afforestation conversely results in low survival rate of trees,water shortages,and biodiversity loss.It is of great significance for achieving sustainable development of forests to reasonable revegetation in the region.At present,the potential distribution pattern of dominant species and their mixed forms in the basin has not been effectively studied.This study simulated the potential distribution of dominant vegetation in the YRB based on Maximum Entropy(Max Ent)and Genetic Algorithm for Rule-Set Prediction(GARP)and explored the impact of human interference on it by employing land use as the environmental filter to distinguish the regions of human activities.We further predicted the potential distribution of typically mixed forests and discussed their human interference.The main results are as follows:(1)Except for Caragana korshinskii,all models had good above performance(0.7<the mean AUC<1).Except for Caragana korshinskii,the area under the curve(AUC)for 90%of the models indicated that Max Ent performed better than GARP,and Max Ent easily lead to over-fitting while GARP predicted a wider range.(2)Except for Nitraria tangutorum,the dominant types of vegetation such as Pinus tabulaeformis,Platycladus orientalis,and Hippophae rhamnoides mainly distributed in southern Gansu,Shaanxi,and south-central Shanxi.Among them,the largest suitable area of Artemisia gmelinii and Stipa bungeana(High suitable area)were approximately 56.7×104 km2(38.8%)and 54.7×104 km2(28.5%)with the area occupied by large-scale cultivation being 17.5×104 km2(39.4%)and 18.9×104 km2(48%),respectively,which indicated human activities caused great damage to the core growth regions of these vegetation.(3)Mean temperature of coldest quarter or month mainly constrained the growth of most vegetation in the YRB in terms of temperature,while precipitation of wettest/driest month is one of the dominant factors.However,some vegetation responded differently to other meteorological factors due to niche differences.(4)Most of the mixed forests were distributed in southern Gansu,Shaanxi,and Shanxi provinces;its middle and high suitable areas were mainly concentrated in Shaanxi and southern and central Shanxi,where the cultivated land had occupied most of them.Therefore,the results showed that the restoration of herbaceous vegetation such as Artemisia gmelinii and Stipa bungeana has a high potential and it is appropriate that the measures for afforestation should be concentrated in the areas like the lower reaches of the Weihe,Jinghe,and Beiluo rivers and Luliang Mountain,where the cultivated land overlaps with the high suitable areas of the corresponding vegetation and the mixed forests with less water consumption and wide distribution,such as Caragana korshinskii-Hippophae rhamnoides,Pinus tabulaeformis-Quercus liaotungensis,and Ostryopsis davidiana-Stipa bungeana-Hippophae rhamnoides.The results of this study can provide effective guidance for mixed forest plantations and vegetation conservation in the YRB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41371249,41201223,and 41101223)the Fundamental Research Funds for the Central Universities,China(Grant No.XDJK2015C059)
文摘Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.
基金Supported by the Impact and Response of Antarctic Seas to Climate Change from Polar Research Institute of China(No.RFSOCC2020-2022-No.18)the National Science Foundation of Tianjin(No.19JCZDJC40600)the National Natural Science Foundation of China(No.42176198)。
文摘Antarctic krill is the key species of ecological system in the Amundsen Sea.At present,the suitable distribution is unobtainable by scientifi c surveys or data from the fi shery.In this paper,the maximum entropy algorithm(Maxent)was used to obtain the potential distribution of adult Antarctic krill in order to provide useful information and reasonable reference for the policy on protecting potential krill habitats around the Amundsen Sea.Occurrence points and 17 environmental variables were used to simulate the distributions.Results show that the high and moderate suitable habitats lie between 65°S and 72°S in the Amundsen Sea.The high suitable habitat accounts for 8.1%of the total area of the Amundsen Sea.The sea ice persistence(ICE),total phytoplankton(PHYC),and the minimum value of dissolved iron(Fe_min)are the three dominant contributors to the model.Results from the response curves show that Antarctic krill preferred habitats with ICE of 0.42-0.93,PHYC of 2.48-2.77 mmol/m^(3) and Fe_min of(7.10×10^(-5))-(9.45×10^(-5))mmol/m 3.Positive trends existed in the PHYC of the high and moderate suitable habitat,and a positive trend existed in the Fe_min of moderate suitable habitat.However,the probability of presence of Antarctic krill will decrease if the increase of the PHYC and Fe_min continues.
文摘The discoveries of binary asteroids have opened an important new field of research concerning the calculation of potential generated by irregular bodies.Some of them have an elongated shape.A simple model to describe the motion of a test particle in that kind of potential requires consideration of a finite homogeneous straight segment.We construct this model by adding an inhomogeneous distribution of mass. To be consistent with the geometrical shape of the asteroid,we explore a parabolic profile of the density.We establish the closed analytical form of the potential generated by this inhomogeneous massive segment.The study of the dynamical behavior is fulfilled by the use of Lagrangian formulation,which allows us to calculate some two and three dimensional orbits.
基金funded by National Key R&D Program of China(No. 2021YFC2600400)National Natural Science Foundation of China(No. 32171794)Forestry Science and Technology Innovation Special of Jiangxi Forestry Department (No. 201912)
文摘Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of the host through its boring activity;it can also be a vector of various pathogenic fungi. This study was conducted to investigate the environmental variables limiting the distribution of H. ligniperda and the change trend of its suitable areas under climate change.Results: We used a maximum entropy model to predict the potential geographical distribution of H. ligniperda on a global scale under near current and future climatic scenarios using its occurrence data and environmental variables. The result shows that the areas surrounding the Mediterranean region, the eastern coastal areas of Asia, and the southeastern part of Oceania are highly suitable for H. ligniperda. The environmental variables with the greatest effect on the distribution of H. ligniperda were determined using the jackknife method and Pearson’s correlation analysis and included the monthly average maximum temperature in April, precipitation of driest quarter, the monthly average minimum temperature in December, precipitation of coldest quarter, mean temperature of driest quarter and mean diurnal range.Conclusions: Excessive precipitation in winter and low temperatures in spring had a great effect on the distribution of H. ligniperda. The potential geographical distribution of H. ligniperda was predicted to change under future climatic conditions compared with near current climate conditions. Highly suitable areas, moderately suitable areas and low suitable areas were predicted to increase by 59.99%, 44.43% and 22.92%, respectively, under the2081–2100 ssp245 scenario.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant Nos. 2010J01210,B509043A,and2011J05006)
文摘Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.
基金Supported by Technology Project Sponsored by Jiangxi Provincial Education Office(GJJ08471)Projects of Yunnan Key Subjects"Forest Protection"(XKZ200905)
文摘[Objective] The aim was to effectively monitor and manage oriental fruit fly.[Method] Maxent model and ArcGIS were used to predict potential geographic distributions of the oriental fruit fly based on associations between known occurrence records and a set of environmental variables.[Result] The suitable areas for Bactrocera dorsalis infestations were mainly restricted to central and southern Jiangxi Province,with Latitude ranged from 24 to 28°N.Northeast Jiangxi,Northwest Jiangxi and the regions bording upon Yangtse River were predicted as unsuitable for Bactrocera dorsalis.The fit for the model as measured by AUC was high,with value of 0.978 for the training data and 0.965 for the test data,indicating the high level of discriminatory power for the Maxent.A jackknife test in Maxent indicated that mean temperature of coldest quarter with highest gain value was the most important environmental variable that restricted the expansion to north Jiangxi Province.[Conclusion] Further research into the biology of the species and their ability to overcome barriers was necessary to explain niche differentiation and better understand invasion risk.
基金Supported by Key Discipline of Forest Protection in Yunnan Province(XKZ200905)National Natural Science Foundation of China(31260105)
文摘Based on Maxent niche model and combined with ArcGIS,the suitable area range for Quadrastichus erythrinae Kim in China was predicted in the paper.The results showed that high suitable area for Q. erythrinae in China included most northeast coastal areas of Hainan Island,partial southern coastal area of Guangdong Province,partial northwestern coastal area and partial southeast coastal area of Taiwan Island; moderate suitable area included partial area of Hainan,some contiguous areas of Guangxi and Guangdong,most areas of Guangdong,partial area of Fujian and Taiwan; low suitable area included partial area from northwestern coast to inland of Hainan Island,west coastal area of Taiwan Island,most area in Guangxi,partial areas in Guangdong,Fujian and Yunnan.
基金supported by the National Key Research and the Development Program of China(No.2019YFE 0124700)the China National Key Research and Development Program(No.2022YFC3106002)+1 种基金the National Natural Science Foundation of China(No.U1901215)the Startup Foundation for Introducing Talent of NUIST(No.2020r028).
文摘Alexandrium minutum from the China Sea produces a range of toxins and causes damage to the local ecosystems and aquaculture.This is essential to understand environmental factors affecting potential distribution.Potential distributions of A.minutum in the China Sea were predicted based on maximum entropy modeling,and dominant environmental variables were studied through analyses of variable contributions and response curves.The results showed that highly suitable areas were mainly located in the southwest of the Yellow Sea,the Laizhou Bay,and north of Haizhou Bay.The coast of the South China Sea was predicted as a low-suitability area,and the coast of the East China Sea as an unsuitable area.Mean temperature of the coldest month(T_min)had the largest drop in permutation importance but a low percent contribution.The probability of presence of A.minutum increased with increasing concentration of nitrate(NO3−)and annual mean temperature(T_ann)over a wide range of them.The response curves decreased with increasing concentration of phosphate(PO43−)and ratio of NO_(3)^(−)to PO_(4)^(3−)(N_P_ratio)when PO_(4)^(3)−is above 0.049μmolL^(-1) and N_P_ratio above 4,indicating that low values of PO_(4)^(3−) concentration and N_P_ratio favour the occurrence of A.minutum.As a predictor,the variance of annual temperature(T_Var)had the highest percent contribution and gains.PO_(4)^(3−) was predicted to have much more information than the other variables,and exhibited the second largest drop in permutation importance and percent contribution.The T_Var and PO_(4)^(3−) are the most important dominant predictor variables.
文摘Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials and their boundary needs to be monitored from time to time.An automatic measurement technic is presented in the paper to substitute for the traditional manual measurement work that is dull,poor efficiency and dangerous for operators.The boundary forming mechanism is analyzed,the vertical profile of electric potential is simulated,an automatic instrument is developed to sense the potential distribution,and a strategy is provided to identify the boundary according to the potential curves.Finally,some practical results are compared with manual measurements,which shows good consistency.