Refs 1 and 2 provide the definition of the concepts of‘potential infinity’(poi)and actual infinity(aci);Ref 3 discusses and verifies that poi and aci are a pair of contradictory opposites without intermediate(p,-p)....Refs 1 and 2 provide the definition of the concepts of‘potential infinity’(poi)and actual infinity(aci);Ref 3 discusses and verifies that poi and aci are a pair of contradictory opposites without intermediate(p,-p).The second part of this paper,i.e.,§2,further discusses the manners in which a variable x approaches infinitely to its limit x0 using the poi and aci methods and concludes that,in any system compatible with both poi and aci, the two approaching manners are also a pair of contradictory opposites without intermediate (A,-A).Finally,on the basis of this conclusion,we reexamine the fundamental question of Leibniz’s Secant and Tangent Lines in calculus and the limit theory and offer our analysis and raise new questions.展开更多
From the perspective of potential infinity (poi) and actual infinity, Ref [4] has confirmed that poi and aci are in 'unmediated opposition' (P,﹁P ) whether in ZFC or not; it has further been proved that the m...From the perspective of potential infinity (poi) and actual infinity, Ref [4] has confirmed that poi and aci are in 'unmediated opposition' (P,﹁P ) whether in ZFC or not; it has further been proved that the manners in which a variable infinitely approaches its limit also satisfy the law of intermediate exclusion. With these results as theoretical bases, this paper attempts to provide an accurate and strict logical-mathematical interpretation of the incompatibility of Leibniz's secant and tangent lines in the medium logic system from the perspective of logical mathematics.展开更多
We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 ...We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 and suppose that G(x) has k local minimum points. For h 〉 0 small, we find multi-bump bound states ~bh (x, t) ---- e-iE~/huh (X) with Uh concentrating at the local minimum points of G(x) simultaneously as h ~ O. The potentials V(x) and K(x) are allowed to be either compactly supported or unbounded at infinity.展开更多
In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscali...In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.展开更多
Abstract: Ref [5] provides a logical-mathematical explanation of the incompatibility ofLeibniz's secant and tangent lines in medium logic. However, the expression (*)(△y/△x) ismeaningful and dy/dx is the tang...Abstract: Ref [5] provides a logical-mathematical explanation of the incompatibility ofLeibniz's secant and tangent lines in medium logic. However, the expression (*)(△y/△x) ismeaningful and dy/dx is the tangent slope) derived from ⑦ and ⑧ in §4 of Ref [5] is unimaginablewithin the framework of two-valued logic, why shouldn't the same conflicting concluslon be reached in the medium logic calculus? This paper has subjected these questions to careful logical analysis, and approached them from the perspective of logical mathematics. As the two approaches have led to the identical conclusion, the paper thereby rigorously and thoroughlv answers these questions.展开更多
We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential crit...We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential critical growth.The approaches used here are based on a version of the Trudinger–Moser inequality and a minimax theorem.展开更多
基金Supported by the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2011KF-04)Supported by the Beihang University and by the National High Technology Research and Development Program of China(863 Program)(2009AA043303)
文摘Refs 1 and 2 provide the definition of the concepts of‘potential infinity’(poi)and actual infinity(aci);Ref 3 discusses and verifies that poi and aci are a pair of contradictory opposites without intermediate(p,-p).The second part of this paper,i.e.,§2,further discusses the manners in which a variable x approaches infinitely to its limit x0 using the poi and aci methods and concludes that,in any system compatible with both poi and aci, the two approaching manners are also a pair of contradictory opposites without intermediate (A,-A).Finally,on the basis of this conclusion,we reexamine the fundamental question of Leibniz’s Secant and Tangent Lines in calculus and the limit theory and offer our analysis and raise new questions.
基金Supported by the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2011KF-04)Supported by the National High Technology Research and Development Program of China (863 Program)(2009AA043303)
文摘From the perspective of potential infinity (poi) and actual infinity, Ref [4] has confirmed that poi and aci are in 'unmediated opposition' (P,﹁P ) whether in ZFC or not; it has further been proved that the manners in which a variable infinitely approaches its limit also satisfy the law of intermediate exclusion. With these results as theoretical bases, this paper attempts to provide an accurate and strict logical-mathematical interpretation of the incompatibility of Leibniz's secant and tangent lines in the medium logic system from the perspective of logical mathematics.
基金supported by National Natural Science Foundation of China(11201132)Scientific Research Foundation for Ph.D of Hubei University of Technology(BSQD12065)the Scientific Research Project of Education Department of Hubei Province(Q20151401)
文摘We study the bound states to nonlinear Schrodinger equations with electro magnetic fields ihδψ/δt=(h/i -A(x))^2ψ+V(x)ψ-K(x)|ψ|^p-1ψ=0,on R+ ×R^N. Let G(x)=[V(x)p+1/p-1-N/2][K(x)]-2/p-1 and suppose that G(x) has k local minimum points. For h 〉 0 small, we find multi-bump bound states ~bh (x, t) ---- e-iE~/huh (X) with Uh concentrating at the local minimum points of G(x) simultaneously as h ~ O. The potentials V(x) and K(x) are allowed to be either compactly supported or unbounded at infinity.
文摘In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.
文摘Abstract: Ref [5] provides a logical-mathematical explanation of the incompatibility ofLeibniz's secant and tangent lines in medium logic. However, the expression (*)(△y/△x) ismeaningful and dy/dx is the tangent slope) derived from ⑦ and ⑧ in §4 of Ref [5] is unimaginablewithin the framework of two-valued logic, why shouldn't the same conflicting concluslon be reached in the medium logic calculus? This paper has subjected these questions to careful logical analysis, and approached them from the perspective of logical mathematics. As the two approaches have led to the identical conclusion, the paper thereby rigorously and thoroughlv answers these questions.
基金Natural Science Foundation of China(Grant Nos.11601190 and 11661006)Natural Science Foundation of Jiangsu Province(Grant No.BK20160483)Jiangsu University Foundation Grant(Grant No.16JDG043)。
文摘We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential critical growth.The approaches used here are based on a version of the Trudinger–Moser inequality and a minimax theorem.