期刊文献+
共找到3,360篇文章
< 1 2 168 >
每页显示 20 50 100
Development of Powder Metallurgy (PM) Compacted Cu-TaC Electrodes for EDM
1
作者 Mohammed Baba Ndaliman Ahsan Ali Khan 《Journal of Mechanics Engineering and Automation》 2011年第5期385-391,共7页
关键词 电火花加工 粉末冶金 TAC 电极 碾压 密度范围 设计实验
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling
2
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review
3
作者 Xuemeng Gan Shaofu Li +1 位作者 Shunyuan Xiao Yafeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期413-426,共14页
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ... The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review. 展开更多
关键词 powder metallurgy titanium sintering densification oxygen scavenging accurate shaping
下载PDF
Thermal stability and microstructure development of cast and powder metallurgy produced Mg-Y-Zn alloy during heat treatment 被引量:3
4
作者 Tomas Kekule Bohumil Smola +3 位作者 Martin Vlach Hana Kudrnova Veronika Kodetova Ivana Stulikova 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第2期173-180,共8页
Response to isochronal annealing up to 440 ℃ of squeeze cast Mg–Y–Zn alloy and of the same alloy prepared by powder metallurgy(PM)and extruded at 280 ℃ was studied by resistivity and microhardness measurement,diff... Response to isochronal annealing up to 440 ℃ of squeeze cast Mg–Y–Zn alloy and of the same alloy prepared by powder metallurgy(PM)and extruded at 280 ℃ was studied by resistivity and microhardness measurement,differential scanning calorimetry(DSC)and microstructure investigation.Electrical resistivity was measured at 77 K and microhardness was measured at room temperature after each annealing step.DSC measurement was performed at various heating rates.Transmission and scanning electron microscopy and optical microscopy revealed ribbons of long-period ordered structure(LPSO)18R and planar defects within grain boundaries.Relatively high density of planar defects was found in grain interiors of the cast alloy with the grain size approximately 50μm.Well pronounced subgrains were observed in the PM prepared alloy.Secondary phase particles decorate grain boundaries in this alloy.Three precipitation processes were detected in the cast alloy during repeated isochronal annealing up to 440 ℃,whereas only one significant process was revealed in the PM alloy.These processes were identified as embedding of stacking faults by solutes,development and rearrangement(18R→14H)of LPSO phase and development of grain boundary particles.A coarsening of grain boundary particles rich in Y and Zn only proceeds in the PM alloy.Activation energies of the precipitation processes were determined.Microhardness exhibits good thermal stability against annealing up to 360 ℃ in the PM alloy. 展开更多
关键词 Mg-Y-Zn alloys powder metallurgy MICROHARDNESS Microstructure development Electrical resistivity
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms
5
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy 被引量:1
6
作者 Ajit Kumar Pulak M.Pandey 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期883-898,共16页
In the present work,biocompatible materials such as niobium(Nb),zinc(Zn)and calcium(Ca)have been blended with magnesium(Mg)to develop a novel biomaterial(BM)with improved mechanical and corrosion resistant properties.... In the present work,biocompatible materials such as niobium(Nb),zinc(Zn)and calcium(Ca)have been blended with magnesium(Mg)to develop a novel biomaterial(BM)with improved mechanical and corrosion resistant properties.Powder metallurgy(PM)technique was used to fabricate Mg based BM.The powder of all aforementioned materials were mixed homogenously in specific quantities to create a uniform composite component.In order to analyse the influence of process parameters on the mechanical properties of the fabricated part,experiments were performed considering central composite design(CCD).The effect of powder metallurgical parameters namely percentage Nb,compaction pressure,heating rate,sintering temperature and soaking time on the ultimate compressive strength(UCS)and sintered density was studied in the present study.It was found that the UCS and sintered density increased with increase in compaction pressure,heating rate and sintering temperature.The results also revealed that the increase in soaking time and percentage Nb,increased sintered density and UCS to a certain limit.Subsequent increase in these two parameters,sintered density and UCS decreased.Scanning electron microscopy(SEM)images of the fabricated samples showed reduction in porosity with the increase in heating rate.Moreover,X-ray diffraction(XRD)results revealed that no other phase or impurities were found during sintering of Mg based BMs.The optimum process parameters were obtained to develop Mg based BM for maximum UCS and sintered density.Furthermore,the Mg based BM samples fabricated at optimum process parameters were used for corrosion testing in simulated body fluid(SBF)solution at a temperature of 37±0.5℃.The Mg based BM yielded improved mechanical properties with reduced corrosion rates as compared to pure Mg. 展开更多
关键词 BIOMATERIALS powder metallurgy MAGNESIUM CORROSION Metal matrix composite
下载PDF
Development of Cu-Exfoliated Graphite Nanoplatelets (xGnP) Metal Matrix Composite by Powder Metallurgy Route
7
作者 Syed Nasimul Alam Lailesh Kumar Nidhi Sharma 《Graphene》 2015年第4期91-111,共21页
In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based m... In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP. 展开更多
关键词 powder metallurgy EXFOLIATED GRAPHITE NANOPLATELETS (xGnP) Cu-Based Metal Matrix Composite SLIDING Wear
下载PDF
Spray forming and mechanical properties of a new type powder metallurgy superalloy
8
作者 贾崇林 葛昌纯 +1 位作者 夏敏 谷天赋 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期556-562,共7页
The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufac- turing has been fabricated using spray forming technology. The metallurgical quality of the deposited bi... The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufac- turing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the 7~ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IE This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material. 展开更多
关键词 spray forming deposited billet mechanical property powder metallurgy (pm superalloy
下载PDF
Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy 被引量:13
9
作者 Xiang Zeng Jie Teng +3 位作者 Jin-gang Yu Ao-shuang Tan Ding-fa Fu Hui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期102-109,共8页
Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an... Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed. 展开更多
关键词 GRAPHENE metal matrix composites solution mixing powder metallurgy mechanical properties
下载PDF
Effect of Die Wall Lubrication on Warm Compaction Powder Metallurgy 被引量:13
10
作者 LI Yuan-yuan, NGAI Tungwai Leo, ZHANG Da-tong, LONG Yan, XIA Wei (College of Mechanical Engineering, South China University of Technology, Guangzhou 510640, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期45-46,共2页
Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials.... Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials. Iron-based samples were prepared by die wall lubricated warm compaction at 135 ℃ and 175 ℃, using polytetrafluoroethylene (PTFE) emulsion as die wall lubricant. A compacting pressure of 700 MPa and 550 MPa were used. The admixed lubricant concentration ranging from 0 to 0.6 wt.% was used in this study. Compared with non-die wall lubricated samples, the die wall lubricated samples have higher green densities. Results show that in addition to the decrease in ejection forces, green density of the compacts increased linearly with the decrease in admixed lubricant content. Mechanical property of the sintered compacts increase sharply when the admixed lubricant concentration reduced to 0.125 wt.% or less. Ejection force data indicated that samples with die wall lubrication show lower ejection forces when compared with samples without die wall lubrication. No scoring was observed in all experiments even for samples contain no admixed lubricant. Our results indicated that under experimental condition used in this study, no matter at which compaction pressure, compaction temperature, graphite and lubricant contents in the powder the die wall lubricated warm compaction would give the highest green density and lowest ejection force. It can be concluded that combination of die wall lubrication and warm compaction can provide P/M products with higher density and better quality. It is a feasible way to produce high performance P/M parts if suitable die wall lubrication system was applied. 展开更多
关键词 warm compaction die wall lubrication powder metallurgy
下载PDF
Improvement of Ductility of Powder Metallurgy Titanium Alloys by Addition of Rare Earth Element 被引量:7
11
作者 Yong LIU Lifang CHEN +3 位作者 Weifeng WEI Huiping TANG Bin LIU Baiyun HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期465-469,共5页
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b... Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct. 展开更多
关键词 powder metallurgy titanium alloy Mechanical properties MICROSTRUCTURE Rare earth element
下载PDF
Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel 被引量:6
12
作者 Jun Yao Xuan-hui Qu Xin-bo He Lin Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期608-614,共7页
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show... The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics. 展开更多
关键词 powder metallurgy tool steel fatigue of materials strength of materials failure modes INCLUSIONS FRACTOGRAPHY
下载PDF
CHARACTERISTICS OF FATIGUE SURFACE MICROCRACK GROWTH IN VICINAL INCLUSION FOR POWDER METALLURGY ALLOYS 被引量:5
13
作者 WangXishu LiYongqiang 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期327-333,共7页
Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fati... Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fatigue failure.In this paper,an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope(SEM).It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion.According to the SEM images,the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail.The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method(FEM). 展开更多
关键词 powder metallurgy alloy INCLUSION FATIGUE MICROCRACK FEM
下载PDF
Application of the gel casting process in iron powder metallurgy 被引量:6
14
作者 Chengchang Jia Weihua Liu Zhimeng Guo 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期29-33,共5页
The effects of various gel casting process parameters such as the dispersant and solid loading on the rheology of Fe slurries, molding, and sintering behaviors were studied. The relationship between solid loading and ... The effects of various gel casting process parameters such as the dispersant and solid loading on the rheology of Fe slurries, molding, and sintering behaviors were studied. The relationship between solid loading and viscidity in the process of iron base powder metallurgy was researched to obtain better microstructure and properties. The results showed that the viscosity of Fe slurries is obviously reduced with the increase of the dispersant. The suitable parameters are as follows: the solid loading is 61% and sintering temperature is 1180℃. Iron parts with relatively high density and better properties were obtained by the gel casting process. 展开更多
关键词 gel casting FE powder metallurgy RHEOLOGY
下载PDF
Preparation and Mechanical Properties of-SiC Nanoparticle Reinforced Aluminum Matrix Composite by a Multi-step Powder Metallurgy Process 被引量:5
15
作者 WANG Linong WU Hao +2 位作者 WU Xingping CHEN Minghai LIU Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1059-1063,共5页
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur... β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite. 展开更多
关键词 Β-SIC NANOPARTICLES particulate reinforced Al matrix composite powder metallurgy
下载PDF
SYNTHESIS OF Ti-47Al-2Cr-2Nb ALLOY THROUGH ELEMENTAL POWDER METALLURGY 被引量:4
16
作者 Liu Yong, Huang Baiyun and He Yuehui Powder Metallurgy Research Institute, Central South University of Technology, Changsha 410083, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第4期39-44,共6页
INTRODUCTIONTiAlbasealoyshaveatractedmoreandmoreatentionbytheirhighspecificstrength,specificrigidityandexce... INTRODUCTIONTiAlbasealoyshaveatractedmoreandmoreatentionbytheirhighspecificstrength,specificrigidityandexcelentpropertiesate... 展开更多
关键词 ELEMENTAL powder metallurgy TIAL base ALLOYS SYNTHESIS
下载PDF
Experimental Study and Finite Element Polycrystal Model Simulation of the Cold Rolling Textures in a Powder Metallurgy Processed Pure Aluminum Plate 被引量:4
17
作者 LiqingCHEN NaoyukiKanetake 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期148-154,共7页
Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however... Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation. Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones. 展开更多
关键词 TEXTURE Cold rolling Aluminium Finite element polycrystal model (FEpm) powder metallurgy
下载PDF
Effect of Copper and Bronze Addition on Corrosion Resistance of Alloyed 316L Stainless Steel Cladded on Plain Carbon Steel by Powder Metallurgy 被引量:4
18
作者 WenjueCHEN YueyingWU JianianSHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期217-220,共4页
A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were ad... A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H2S04 and FeCI3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCI3 solutions. Small Cu and bronze addition (4%) had a positive effect in H2SO4 and FeCI3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3 solutions. 展开更多
关键词 Surface cladding powder metallurgy Corrosion resistance
下载PDF
Assessment of the SiC_p Distribution Uniformity in SiC_p/Al Composites Made by Powder Metallurgy 被引量:4
19
作者 樊建中 姚忠凯 +3 位作者 郭宏 李义春 石力开 张少明 《Rare Metals》 SCIE EI CAS CSCD 1996年第3期208-213,共6页
In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure a... In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure at the macro- and micro-mixed stages was investigated and the methods for determining mix-ture quality were put forward. 展开更多
关键词 SiC_p distribution uniformity SiC_p/Al powder metallurgy
下载PDF
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal 被引量:3
20
作者 贾崇林 葛昌纯 燕青芝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期320-326,共7页
Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superall... Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique(for making turbine disk) are proposed and studied.Subsequently, advanced technologies like electrode-induction-melting gas atomization(EIGA), and spark-plasma discharge spheroidization(SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. 展开更多
关键词 pm superalloy innovative technology powder preparation spray forming
下载PDF
上一页 1 2 168 下一页 到第
使用帮助 返回顶部