This study was carried out during 2007-2009 in the vineyards of Ardebil province of lran to study the biology and the epidemiology of Uncinula necator--the causal agent of grape powdery mildew disease. The study conce...This study was carried out during 2007-2009 in the vineyards of Ardebil province of lran to study the biology and the epidemiology of Uncinula necator--the causal agent of grape powdery mildew disease. The study concentrated on the survival and the initiation of primary inoculum of the fungal causal agent. Results of histopathological experiments indicated that U. necator survived as mycelium in the dormant buds of the grapes during winter season. Results of study on the effect of environmental factors on fungus biology showed that the pathogenic activity of the fungus began when the temperature was between 16-19 ℃ with a relative humidity more than 50%. It was also found that optimum temperature and relative humidity for the sporulation of U.necator was 20-25 ~C and 50%-100% respectively. According to the results, fungal conidia were trapped during formation of 5-6 true leaves and first disease symptoms were observed on the clusters on late June after fruit formation. Fungal cleistothecia were observed abundantly at the end of season on the leaves, petioles and twigs but they were not able to survive during winter. Formation of ascospores on young leaves was proved but their role as the primary inoculum was not supported by the results of this study. Results of this study and the new findings on the biology and epidemiology of U.necator may be of national and international interests for the management of powdery mildew disease which is one of the most destructive diseases around the world including Iran.展开更多
[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,a...[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,and to investigate the relationship between the induced resistance and the gene expression patterns.[Method] Three powdery mildew susceptible cultivars of "Chinese Spring","Pumai 9" and "Zhoumai 18" typically representing different phenotypes in the field were employed.The powdery mildew was assessed by detached leaf assay,and real time quantitative RT-PCR was used to determine the expression patterns of 9 disease resistance related genes of PR1(PR1.1),PR2(β,1-3 glucanase),PR3(chitinase),PR4(wheatwin1),PR5(thaumatin-like protein),PR9(TaPERO,peroxidase),PR10,TaGLP2a(germin-like)and Ta-JA2(jasmonate-induced protein)in leaf of the three cultivars.[Result] MeJA application enhanced the powdery mildew resistances of "Chinese Spring","Pumai 9" and "Zhoumai 18".The induced powdery mildew resistance could be detected from 12 h to 96 h after MeJA treatment,and the peak value was at 24 h.Though there were differences between the three cultivars,MeJA significantly effect on the expressions of the 8 disease resistance related genes except TaGLP2a,and the peak values were at 12 h,24 h or 48 h after treatments.The strongest activation of MeJA was on PR9 and PR1 that their expressions could reach more than 100 times of the untreated samples.MeJA strongly activated PR2、PR4、PR5、PR3、PR10 and Ta-JA2,their expression could reach 10 to 70 times,and there was almost no activation effect on TaGLP2a.The induced powdery mildew resistance positively correlated with the induced expressions of the 8 disease related genes.[Conclusion] The induced powdery mildew resistance positively correlated with the induced expressions of the disease related genes.Jasmonate signalling plays a role in defence against Blumeria graminis f.sp.tritici.and future manipulation of this pathway may improve powdery mildew resistance in wheat.展开更多
Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, ...Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, which is characterized by high resistance to powdery mildew and stripe rust. In this study,an F_2 population derived from a cross K78S/Yunmai52 was constructed to investigate the resistance genes, where K78 S is a wheat male sterile line susceptible to powdery mildew and stripe rust. Phenotypic identification of the parents, F_1 and F_2 populations and chi-square analyses showed that F_1 population was immune to stripe rust and powdery mildew; the segregation ratio of resistance and susceptibility to powdery mildew(χ~2=1.10χ~2_(1,0.05)=3.84) and stripe rust(χ~2=0.15χ~2_(1,0.05)=3.84) fit to a 3:1 ratio in F_2 population, indicating that Yunmai52 harbors a dominant stripe rust resistance gene and a dominant powdery mildew resistance gene. The individuals were further detected with a marker co-segregated with Pm21(SCAR_(1400)) and two markers closely linked with Yr26(XWe173 and Xbarc181). The results showed that polymorphic bands could be amplified between the parents and between resistance and susceptibility gene pools at the same locus. Randomly 96 individuals of F_2 population were selected for verification. The results showed that the phenotype was significantly correlated with the genotype. The detection accuracy of markers SCAR_(1400), XWe173 and Xbarc181 was 100%, 97.91% and 92.70%, respectively.Yunmai52 harbored powdery mildew resistance gene Pm21 and stripe rust resistance gene Yr26, which were both derived from 6AL/6VS translocation line 92R149.In addition, the results also demonstrate that Pm21 and Yr26 are two genes conferring durable resistance to powdery mildew and stripe rust in wheat.展开更多
The Pm18 gene of wheat confers resistance to the powdery mildew which is one of the mostserious diseases in many regions of the world. In this study, bulked segregant analysis(BSA) was used to develop randomly amplifi...The Pm18 gene of wheat confers resistance to the powdery mildew which is one of the mostserious diseases in many regions of the world. In this study, bulked segregant analysis(BSA) was used to develop randomly amplified polymorphic DNA (RAPD) markers linked toPm18 gene. Three hundred and twenty decamer primers were screened and one of them wasidentified as RAPD marker (S411600) linked to Pm18. Using the F2 mapping population fromthe cross Pm18Chancellor, the marker S411600 was shown to co-segregate with the genePm18. This marker can be conveniently used for marker-assisted selection in wheatbreeding programs for the identification or pyramiding of Pm18 with other resistancegenes.展开更多
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find...Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.展开更多
Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to ...Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B.graminis f.sp.tritici isolate E09.Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2population,in which PmTm4 was located into a 0.66-c M genetic interval.The orthologous subgenome region of PmTm4in Aegilops tauschii was identified,and two resistance gene analogs(RGA)were characterized from the corresponding sequence scaffolds of Ae.tauschii draft assembly.The closely linked markers and identified Ae.tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.展开更多
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat(Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. ...Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat(Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated Ml WE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of Ml WE4 was constructed, and Ml WE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes Ml WE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of Ml WE4, Pm36 and Ml3D232.展开更多
Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,whic...Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,which confers resistance to the powdery mildew in wheat. 200 decamer primers were screened and one RAPD marker (S107 1900 ) was identified to be linked to Pm12 in coupling phase,and their genetic distance is 11.98± 4.00cM. This marker can be used for marker-assisted selection in wheat breeding for the identification or pyramiding of Pm12 with other resistance genes.展开更多
The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates of Bluemerie graminis. Polymorphisms were revealed between 6D/6V sub...The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates of Bluemerie graminis. Polymorphisms were revealed between 6D/6V substitution line Pm930640 and its pedigree parents using five RAPD markers of OPAN031700, OPAI01700, OPAL03750, OPAD07480 and OPAG15580 screened out from 120 random 10-mers primers. Three RAPD markers of OPAN03, OPAI01 and OPAL03 were linked with the resistance gene by analysis of F2 population of Chancellor×Pm930640. Analysis of 29 wheat lines including part of lines conferring the known genes from Pm1 to Pm20 respectively, lines conferring resistance gene from two H. villosa accessions and the related wheat parents, were analyzed and the results showed that these markers not only linked to the gene resistant to powdery mildew from H. villosa, but also detected different genetic backgrounds. OPAL03750 can be used as the marker to distinguish the different resistant lines from two H. villosa accessions because it was only observed in the materials from H. villosa of the former Soviet Union. RFLP analysis also showed the polymorphisms between two H. villosa accessions and their derived resistant lines.展开更多
Cucumber is an important vegetable worldwide,and powdery mildew(PM)is a common and serious disease of cucumbers.Breeding disease-resistant cucumber varieties is the most advantageous strategy to control this disease.I...Cucumber is an important vegetable worldwide,and powdery mildew(PM)is a common and serious disease of cucumbers.Breeding disease-resistant cucumber varieties is the most advantageous strategy to control this disease.In recent years,exploration and identification of cucumber PM resistance genes have achieved great advancement,and many genes have been cloned and verified using different methods.However,the resistance mechanism of cucumber PM is still unclear,and many ambiguities need to be elucidated urgently.In this review,we summarized the research advances in PM resistance in cucumbers,including genetic analysis,quantitative trait locus mapping,map-based cloning,transcriptomics,mlo-mediated PM resistance,and mining of noncoding RNAs involved in resistance.Finally,the research directions and the problems that need to be solved in the future were discussed.展开更多
Powdery mildew(PM),caused by the fungus Microsphaera diffusa,causes severe yield losses in soybean[Glycine max(L.)Merr.]under suitable environmental conditions.Identifying resistance genes and developing resistant cul...Powdery mildew(PM),caused by the fungus Microsphaera diffusa,causes severe yield losses in soybean[Glycine max(L.)Merr.]under suitable environmental conditions.Identifying resistance genes and developing resistant cultivars may prevent soybean PM damage.In this study,analysis of F_(1),F_(2),and F8:11 recombinant inbred line(RIL)populations derived from the cross between Zhonghuang 24(ZH24)and Huaxia 3(HX3)indicated that adult-plant resistance(APR)to powdery mildew in the soybean cultivar(cv.)ZH24 was controlled by a single dominant locus.A high-density genetic linkage map of the RIL population was used for fine mapping.The APR locus in ZH24 was mapped to a 281-kb genomic region on chromosome 16.Using 283 susceptible plants of another F2 population,the candidate region was finemapped to a 32.8-kb genomic interval flanked by the markers InDel14 and Gm16_428.The interval harbored five genes,including four disease resistance(R)-like genes,according to the Williams 82.a2.v1 reference genome.Quantitative real-time PCR assays of candidate genes revealed that the expression levels of Glyma.16g214300 and Glyma.16g214500 were changed by M.diffusa infection and might be involved in disease defense.Rmd_B13 showed all-stage resistance(ASR)to PM in soybean cv.B13.An allelism test in the F2 segregating population from the cross of ZH24 × B13 suggested that the APR locus Rmd_ZH24 and the ASR locus Rmd_B13 may be allelic or tightly linked.These results provide a reference marker-assisted selection in breeding programs.展开更多
Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental...Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.展开更多
'Bainong 3217 × Mardler' BC5F4 wheat line at the initial stage of inoculation with powdery mildew pathogen (Erysiphe graminis DC) was used to construct a suppression subtractive hybridization (SSH) cDNA l...'Bainong 3217 × Mardler' BC5F4 wheat line at the initial stage of inoculation with powdery mildew pathogen (Erysiphe graminis DC) was used to construct a suppression subtractive hybridization (SSH) cDNA library. Totally 760 ESTs were obtained through sequencing. Similarity analysis of ESTs based on BLASTn and BLASTx with the sequences in GenBank, in combination with macroarray differential screening, revealed that 199 ESTs of 65 kinds were known to be functionally disease resistance related. Based on the gene expression profiling in the present study, it is postulated that salicylic acid (SA) and MAP-related signal transduction pathways were involved in powdery mildew resistance in wheat. System acquired resistance genes were predominant in terms of kinds and quantity. With the initiation of cell defense reaction, the genes conferring anti-oxidation substances were largely expressed and thus cell protection mechanism was activated. Much evidence revealed that phenylpropanes metabolic pathway was展开更多
文摘This study was carried out during 2007-2009 in the vineyards of Ardebil province of lran to study the biology and the epidemiology of Uncinula necator--the causal agent of grape powdery mildew disease. The study concentrated on the survival and the initiation of primary inoculum of the fungal causal agent. Results of histopathological experiments indicated that U. necator survived as mycelium in the dormant buds of the grapes during winter season. Results of study on the effect of environmental factors on fungus biology showed that the pathogenic activity of the fungus began when the temperature was between 16-19 ℃ with a relative humidity more than 50%. It was also found that optimum temperature and relative humidity for the sporulation of U.necator was 20-25 ~C and 50%-100% respectively. According to the results, fungal conidia were trapped during formation of 5-6 true leaves and first disease symptoms were observed on the clusters on late June after fruit formation. Fungal cleistothecia were observed abundantly at the end of season on the leaves, petioles and twigs but they were not able to survive during winter. Formation of ascospores on young leaves was proved but their role as the primary inoculum was not supported by the results of this study. Results of this study and the new findings on the biology and epidemiology of U.necator may be of national and international interests for the management of powdery mildew disease which is one of the most destructive diseases around the world including Iran.
基金Supported by The Key Project of Science and Technology of HenanProvince(102102110040)Innovation Scientists and the Innovation Fund for Outstanding Scholars of Henan Province(104200510013)~~
文摘[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,and to investigate the relationship between the induced resistance and the gene expression patterns.[Method] Three powdery mildew susceptible cultivars of "Chinese Spring","Pumai 9" and "Zhoumai 18" typically representing different phenotypes in the field were employed.The powdery mildew was assessed by detached leaf assay,and real time quantitative RT-PCR was used to determine the expression patterns of 9 disease resistance related genes of PR1(PR1.1),PR2(β,1-3 glucanase),PR3(chitinase),PR4(wheatwin1),PR5(thaumatin-like protein),PR9(TaPERO,peroxidase),PR10,TaGLP2a(germin-like)and Ta-JA2(jasmonate-induced protein)in leaf of the three cultivars.[Result] MeJA application enhanced the powdery mildew resistances of "Chinese Spring","Pumai 9" and "Zhoumai 18".The induced powdery mildew resistance could be detected from 12 h to 96 h after MeJA treatment,and the peak value was at 24 h.Though there were differences between the three cultivars,MeJA significantly effect on the expressions of the 8 disease resistance related genes except TaGLP2a,and the peak values were at 12 h,24 h or 48 h after treatments.The strongest activation of MeJA was on PR9 and PR1 that their expressions could reach more than 100 times of the untreated samples.MeJA strongly activated PR2、PR4、PR5、PR3、PR10 and Ta-JA2,their expression could reach 10 to 70 times,and there was almost no activation effect on TaGLP2a.The induced powdery mildew resistance positively correlated with the induced expressions of the 8 disease related genes.[Conclusion] The induced powdery mildew resistance positively correlated with the induced expressions of the disease related genes.Jasmonate signalling plays a role in defence against Blumeria graminis f.sp.tritici.and future manipulation of this pathway may improve powdery mildew resistance in wheat.
基金Supported by National 863 Program of China(2011AA10A106)Director Fund of the Institute of Food Crops+1 种基金Yunnan Academy of Agricultural Sciences(2013LZS003)Program for Science and Technology Innovation Talents of Yunnan Province(2012HC008)~~
文摘Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, which is characterized by high resistance to powdery mildew and stripe rust. In this study,an F_2 population derived from a cross K78S/Yunmai52 was constructed to investigate the resistance genes, where K78 S is a wheat male sterile line susceptible to powdery mildew and stripe rust. Phenotypic identification of the parents, F_1 and F_2 populations and chi-square analyses showed that F_1 population was immune to stripe rust and powdery mildew; the segregation ratio of resistance and susceptibility to powdery mildew(χ~2=1.10χ~2_(1,0.05)=3.84) and stripe rust(χ~2=0.15χ~2_(1,0.05)=3.84) fit to a 3:1 ratio in F_2 population, indicating that Yunmai52 harbors a dominant stripe rust resistance gene and a dominant powdery mildew resistance gene. The individuals were further detected with a marker co-segregated with Pm21(SCAR_(1400)) and two markers closely linked with Yr26(XWe173 and Xbarc181). The results showed that polymorphic bands could be amplified between the parents and between resistance and susceptibility gene pools at the same locus. Randomly 96 individuals of F_2 population were selected for verification. The results showed that the phenotype was significantly correlated with the genotype. The detection accuracy of markers SCAR_(1400), XWe173 and Xbarc181 was 100%, 97.91% and 92.70%, respectively.Yunmai52 harbored powdery mildew resistance gene Pm21 and stripe rust resistance gene Yr26, which were both derived from 6AL/6VS translocation line 92R149.In addition, the results also demonstrate that Pm21 and Yr26 are two genes conferring durable resistance to powdery mildew and stripe rust in wheat.
文摘The Pm18 gene of wheat confers resistance to the powdery mildew which is one of the mostserious diseases in many regions of the world. In this study, bulked segregant analysis(BSA) was used to develop randomly amplified polymorphic DNA (RAPD) markers linked toPm18 gene. Three hundred and twenty decamer primers were screened and one of them wasidentified as RAPD marker (S411600) linked to Pm18. Using the F2 mapping population fromthe cross Pm18Chancellor, the marker S411600 was shown to co-segregate with the genePm18. This marker can be conveniently used for marker-assisted selection in wheatbreeding programs for the identification or pyramiding of Pm18 with other resistancegenes.
基金Supported by the NSF of China(Grant no.31471488)State Key Laboratory of Crop Biology(2017KF03)+3 种基金Shandong Province Key Technology Innovation Project(2014GJJS0201-1)Transgenic Special Item(2016ZX08002003)National Modern Agricultural Industry System Construction Project(CARS-03-1-8)The Scholars of Taishan Seed Industry Project(2014-2019)
文摘Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.
基金financially supported by the National Natural Science Foundation of China (31371624, 31210103902)
文摘Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B.graminis f.sp.tritici isolate E09.Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2population,in which PmTm4 was located into a 0.66-c M genetic interval.The orthologous subgenome region of PmTm4in Aegilops tauschii was identified,and two resistance gene analogs(RGA)were characterized from the corresponding sequence scaffolds of Ae.tauschii draft assembly.The closely linked markers and identified Ae.tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.
基金financially supported by the National HighTech R&D Program of China (2011AA100104)the National Basic Research Program of China (2013CB127705)+1 种基金the National Natural Science Foundation of China (31030056, 31210103902)the Introducing Talents of Disciplines to Universities,Ministry of Education (MOE) of China (111-02-3)
文摘Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat(Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated Ml WE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of Ml WE4 was constructed, and Ml WE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes Ml WE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of Ml WE4, Pm36 and Ml3D232.
文摘Powdery mildew is one of the most serious diseases of wheat in China. In this paper,bulked segregant analysis (BSA) was used to search for randomly amplified polymorphic DNA (RAPD) markers linked to the Pm12 gene,which confers resistance to the powdery mildew in wheat. 200 decamer primers were screened and one RAPD marker (S107 1900 ) was identified to be linked to Pm12 in coupling phase,and their genetic distance is 11.98± 4.00cM. This marker can be used for marker-assisted selection in wheat breeding for the identification or pyramiding of Pm12 with other resistance genes.
基金This work was supported by the National Key Technologies R&D Program in 9th Five-Year Plan of China(85-002-02-03)Natural Science Foundation of Hebei Province of China(30145).
文摘The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates of Bluemerie graminis. Polymorphisms were revealed between 6D/6V substitution line Pm930640 and its pedigree parents using five RAPD markers of OPAN031700, OPAI01700, OPAL03750, OPAD07480 and OPAG15580 screened out from 120 random 10-mers primers. Three RAPD markers of OPAN03, OPAI01 and OPAL03 were linked with the resistance gene by analysis of F2 population of Chancellor×Pm930640. Analysis of 29 wheat lines including part of lines conferring the known genes from Pm1 to Pm20 respectively, lines conferring resistance gene from two H. villosa accessions and the related wheat parents, were analyzed and the results showed that these markers not only linked to the gene resistant to powdery mildew from H. villosa, but also detected different genetic backgrounds. OPAL03750 can be used as the marker to distinguish the different resistant lines from two H. villosa accessions because it was only observed in the materials from H. villosa of the former Soviet Union. RFLP analysis also showed the polymorphisms between two H. villosa accessions and their derived resistant lines.
基金supported by the National Natural Science Foundation of China(Grant No.31701915)Zhejiang Province Public Welfare Technology Application Research Project(Grant No.LGN19C150007).
文摘Cucumber is an important vegetable worldwide,and powdery mildew(PM)is a common and serious disease of cucumbers.Breeding disease-resistant cucumber varieties is the most advantageous strategy to control this disease.In recent years,exploration and identification of cucumber PM resistance genes have achieved great advancement,and many genes have been cloned and verified using different methods.However,the resistance mechanism of cucumber PM is still unclear,and many ambiguities need to be elucidated urgently.In this review,we summarized the research advances in PM resistance in cucumbers,including genetic analysis,quantitative trait locus mapping,map-based cloning,transcriptomics,mlo-mediated PM resistance,and mining of noncoding RNAs involved in resistance.Finally,the research directions and the problems that need to be solved in the future were discussed.
基金supported by the National Natural Science Foundation of China(31971966)the Key-Areas Research and Development Program of Guangdong Province(2020B020220008)the China Agriculture Research System(CARS-04-PS09).
文摘Powdery mildew(PM),caused by the fungus Microsphaera diffusa,causes severe yield losses in soybean[Glycine max(L.)Merr.]under suitable environmental conditions.Identifying resistance genes and developing resistant cultivars may prevent soybean PM damage.In this study,analysis of F_(1),F_(2),and F8:11 recombinant inbred line(RIL)populations derived from the cross between Zhonghuang 24(ZH24)and Huaxia 3(HX3)indicated that adult-plant resistance(APR)to powdery mildew in the soybean cultivar(cv.)ZH24 was controlled by a single dominant locus.A high-density genetic linkage map of the RIL population was used for fine mapping.The APR locus in ZH24 was mapped to a 281-kb genomic region on chromosome 16.Using 283 susceptible plants of another F2 population,the candidate region was finemapped to a 32.8-kb genomic interval flanked by the markers InDel14 and Gm16_428.The interval harbored five genes,including four disease resistance(R)-like genes,according to the Williams 82.a2.v1 reference genome.Quantitative real-time PCR assays of candidate genes revealed that the expression levels of Glyma.16g214300 and Glyma.16g214500 were changed by M.diffusa infection and might be involved in disease defense.Rmd_B13 showed all-stage resistance(ASR)to PM in soybean cv.B13.An allelism test in the F2 segregating population from the cross of ZH24 × B13 suggested that the APR locus Rmd_ZH24 and the ASR locus Rmd_B13 may be allelic or tightly linked.These results provide a reference marker-assisted selection in breeding programs.
基金supported by the National Key R&D Program of China(Grant No.2018YFD1000400)National Natural Science Foundation of China(Grant Nos.31860571 and 31560565)+1 种基金Major Science and Technology Projects Yunnan Province(Grant No.2016ZA005)Yunnan Youth Academic&Technical Leaders Reserve Talents Training Project(Grant No.2015HB078)。
文摘Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.
基金This work was supported by the National "973" Program (Grant No. G1998010200) the National Natural Science Foundation of China (Grant No. 39980029).
文摘'Bainong 3217 × Mardler' BC5F4 wheat line at the initial stage of inoculation with powdery mildew pathogen (Erysiphe graminis DC) was used to construct a suppression subtractive hybridization (SSH) cDNA library. Totally 760 ESTs were obtained through sequencing. Similarity analysis of ESTs based on BLASTn and BLASTx with the sequences in GenBank, in combination with macroarray differential screening, revealed that 199 ESTs of 65 kinds were known to be functionally disease resistance related. Based on the gene expression profiling in the present study, it is postulated that salicylic acid (SA) and MAP-related signal transduction pathways were involved in powdery mildew resistance in wheat. System acquired resistance genes were predominant in terms of kinds and quantity. With the initiation of cell defense reaction, the genes conferring anti-oxidation substances were largely expressed and thus cell protection mechanism was activated. Much evidence revealed that phenylpropanes metabolic pathway was