期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Identification of High-Risk Scenarios for Cascading Failures in New Energy Power Grids Based on Deep Embedding Clustering Algorithms
1
作者 Xueting Cheng Ziqi Zhang +1 位作者 Yueshuang Bao Huiping Zheng 《Energy Engineering》 EI 2023年第11期2517-2529,共13页
At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident... At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios. 展开更多
关键词 New energy power system deep embedding clustering algorithms cascading failures
下载PDF
Virtual Synchronous Generator Adaptive Control of Energy Storage Power Station Based on Physical Constraints
2
作者 Yunfan Huang Qingquan Lv +1 位作者 Zhenzhen Zhang Haiying Dong 《Energy Engineering》 EI 2023年第6期1401-1420,共20页
The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability ... The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability to actively support the power grid,from passive regulation to active support.Since energy storage is an important physical basis for realizing the inertia and damping characteristics in VSG control,energy storage constraints of the physical characteristics on the system control parameters are analyzed to provide a basis for the system parameter tuning.In a classic VSG control,its virtual inertia and damping coefficient remain unchanged.When the grid load changes greatly,the constant control strategy most likely result in the grid frequency deviation beyond the stable operation standard limitations.To solve this problem,a comprehensive control strategy considering electrified wire netting demand and energy storage unit state of charge(SOC)is proposed,and an adaptive optimization method of VSG parameters under different SOC is given.The energy storage battery can maintain a safe working state at any time and be smoothly disconnected,which can effectively improve the output frequency performance of energy storage system.Simulation results further demonstrated the effectiveness of the VSG control theoretical analysis. 展开更多
关键词 VSG energy storage power station physical constraints of energy storage adaptive parameter frequency performance
下载PDF
Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network
3
作者 Hang Yang Xunbo Li Witold Pedrycz 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1531-1551,共21页
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito... Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN. 展开更多
关键词 Industrial wireless sensor network hybrid power bank deployment model:energy supply coverage optimization artificial bee colony algorithm radio frequency numerical function optimization
下载PDF
Steady-State Analysis of Grid-Connected New Energy Power Plants
4
作者 Zhichao Zhang 《Journal of Architectural Research and Development》 2023年第2期64-71,共8页
In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,... In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined. 展开更多
关键词 New energy power plant Grid connection technology Online publication:March 31 2023
下载PDF
Impact of interconnections and renewable energy integration on the Philippine-Sabah Power Grid systems
5
作者 Tristan G.Magallones,Jr. Jai Govind Singh 《Global Energy Interconnection》 EI CSCD 2023年第3期253-272,共20页
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(... This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented. 展开更多
关键词 Modeling of ASEAN power Grid Rotor angle stability of asynchronous Philippine-Sabah interconnection in ASEAN power Grid The impact of renewable energy integration on Philippine-Sabah interconnection in ASEAN power Grid
下载PDF
NEW PRINCIPLES OF WORK AND ENERGY AS WELLAS POWER AND ENERGY RATE FORCONTINUUM FIELD THEORIES 被引量:3
6
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第11期1231-1239,共9页
New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary... New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary conditions as well as complete equations of energy and energy rate with the help of generalized Piola's theorems were naturally derived in all and without any additional requirement. Finally, some new balance laws of energy and energy rate for generalized continuum mechanics were established. The new principles of work and energy as well as power and energy rate with cross terms presented in this paper are believed to be new and they have corrected the incompleteness of all existing corresponding principles and laws without cross terms in literatures of generalized continuum field theories. 展开更多
关键词 new principles of work and energy power and energy rate generalized Piola's theorem new equations of energy and energy rate generalized continua
下载PDF
All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo_2S_4@MnS and active carbon 被引量:3
7
作者 Zhiguo Zhang Xiao Huang +3 位作者 Huan Li Hongxia Wang Yingyuan Zhao Tingli Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1260-1266,共7页
Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple... Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future. 展开更多
关键词 NiCo_2S_4@MnS core–shell structure FLEXIBLE All-solid-state supercapacitor High energy and power densities
下载PDF
Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor 被引量:2
8
作者 Wenjie Fan Jia Ding +7 位作者 Jingnan Ding Yulong Zheng Wanqing Song Jiangfeng Lin Caixia Xiao Cheng Zhong Huanlei Wang Wenbin Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期58-75,共18页
Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode dev... Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode development.Herein we construct an aqueous zinc ion capacitor possessing an unrivaled combination of high energy and power characteristics by employing a unique dual-ion adsorption mechanism in the cathode side.Through a templating/activating co-assisted carbonization procedure,a routine protein-rich biomass transforms into defect-rich carbon with immense surface area of 3657.5 m^(2) g^(-1) and electrochemically active heteroatom content of 8.0 at%.Comprehensive characterization and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations and anions,which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/charge.The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g^(-1) and retention of72 mAh g^(-1) at ultrahigh current density of 100 A g^(-1)(400 C),corresponding to the outstanding energy and power of 168 Wh kg^(-1)and 61,700 W kg^(-1).Furthermore,practical battery configurations of solid-state pouch and cable-type cells display excellent reliability in electrochemistry as flexible and knittable power sources. 展开更多
关键词 Aqueous zinc ion capacitor Dual-ion adsorption Charge storage mechanism High energy and power Flexible and knittable devices
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
9
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 Battery energy storage power quality wind energy generating system.
下载PDF
NEW PRINCIPLES OF POWER AND ENERGY RATE OF INCREMENTAL RATE TYPE FOR GENERALIZED CONTINUUM FIELD THEORIES
10
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1383-1389,共7页
The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well... The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics. 展开更多
关键词 generalized continua incremental rate type principles of power and energy rate generalized Piola's theorem
下载PDF
Discount Rate of China’s New Energy Power Industry
11
作者 Yafei Rong Xudong Sun 《Energy Engineering》 EI 2022年第1期315-329,共15页
Under the dual pressures of energy crisis and environmental pollution,China’s new energy power industry has become a focal point for environmental management and requires greater investment.In this context,as a signi... Under the dual pressures of energy crisis and environmental pollution,China’s new energy power industry has become a focal point for environmental management and requires greater investment.In this context,as a significant input of investment projects,discount rate requires a well-calibrated evaluation because new energy power investment projects are highly capital intensive.The main objective of this paper is to evaluate the discount rate of China’s new energy power industry.First,we use Moving Average to correct the parameters of capital asset pricing model(CAPM)and weighted average cost of capital,which extends the literature on the avoidance of CAPM noise information problem.Second,we study the industry-level annual discount rates of mainly China’s new energy power industries,including hydropower,nuclear power,wind power,and photovoltaic power industries for the period of 2014-2019.The results show that discount rates in China’s new energy power industries evolved differently between the years of 2014-2019 with average annual discount rates being 7.56%,5.83%,5.60%,and 8.64%,for the hydropower,nuclear power,wind power,and photovoltaic power industries,respectively.In 2019,the four annual discount rates were highest for the photovoltaic power industry(8.66%),followed by hydropower(7.17%),wind power(5.72%),and nuclear power industry(5.26%).Forecasting to 2020 from the 2019 evaluation base period,the discount rates are 6.37%,5.00%,6.57%,and 9.05%for the photovoltaic power,hydropower,wind power,and nuclear power industries,respectively.Under the different capital structures,their forecasts for the photovoltaic power,hydropower,wind power,and nuclear power industries in 2020 are,respectively,within[4.35%,9.24%],[3.92%,7.10%],[4.58%,10.40%],[5.46%,14.81%].We also discussed more details on capital structure and forecast period of discount rates for China’s new energy power industries.Our analysis shows that it is necessary to establish a new energy power industry database and steadily promote the implementation of policies. 展开更多
关键词 Discount rate China’s new energy power industry moving average capital asset price model weighted average cost of capital
下载PDF
Research of Thermal Energy Storage Technology in the Solar Thermodynamic Power
12
作者 Yueru Zhang 《Journal of Power and Energy Engineering》 2016年第7期42-49,共8页
Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and... Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and economy development. However, development pattern that excessively relies on the natural source is impossible to provide a sustainable development way for us. As a result, we should combine renewable energy with new energy technology as the aim of economy. It means that it is urgent to exploit new energy. Meanwhile, the ratio of energy waste cannot be ignored. How to decrease energy waste is also significant. Construction sector costs a lot of energy, which is mainly used for heating and refrigeration. In the new energy generation technology, thermal energy can be transformed to electricity with combination of BIPV and thermal energy storage technology. Photovoltaic generation has a great progress in the building construction. As a result, the thermal energy storage technology becomes the key link in the production chain. In this paper, feasibility of applying phase-change material (PCM) in the thermal energy storage will be analyzed. And analysis results are provided with a relative mathematical model. 展开更多
关键词 New energy power Generation Sensible Heat Storage Latent Heat Storage Phase-Change Material
下载PDF
A model solar energy power plant will be built in Shandong Province
13
作者 Liu Chunsheng 《Electricity》 2010年第2期7-,共1页
A US-China jointly owned model solar energy power plant, with an ultimate installed capacity of 2 000 MW, will be built in Shandong Province.
关键词 WILL A model solar energy power plant will be built in Shandong Province
下载PDF
Renewable energy power generation projects started construction in Tibet
14
作者 Liu Chunsheng 《Electricity》 2010年第2期6-,共1页
On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.
关键词 Renewable energy power generation projects started construction in Tibet
下载PDF
US Tang Energy Group to explore wind power in Xinjiang
15
《Electricity》 1998年第3期29-29,共1页
关键词 US Tang energy Group to explore wind power in Xinjiang
下载PDF
On the Development of China's Thermal Power in the 21st Century while Saving the Energy and Protecting the Environment
16
作者 Zheng Dingyong, Northwest Electric Power Design Institute 《Electricity》 1996年第3期16-18,共3页
In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century... In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century shall be the efficiency and cleaning technology of coal use. Especially important is the structure of power sources and configuration of technology process, and secondly the implementation of energy saving and environmental protection ideology in the various stages of thermal power construction and design work. 展开更多
关键词 De On the Development of China’s Thermal power in the 21st Century while Saving the energy and Protecting the Environment IGCC
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
17
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide High energy/power density Fast-charging HIGH-VOLTAGE Lithium-ion battery
下载PDF
Earth energy evolution, human development and carbon neutral strategy 被引量:4
18
作者 ZOU Caineng MA Feng +6 位作者 PAN Songqi LIN Minjie ZHANG Guosheng XIONG Bo WANG Ying LIANG Yingbo YANG Zhi 《Petroleum Exploration and Development》 CSCD 2022年第2期468-488,共21页
Energy is the basis of human development and the impetus of society progress. There are three sources of energy: energy of celestial body outside the Earth, the Earth energy and energy of interaction between the Earth... Energy is the basis of human development and the impetus of society progress. There are three sources of energy: energy of celestial body outside the Earth, the Earth energy and energy of interaction between the Earth and other celestial bodies. Meanwhile, there are three scales of co-evolution: the evolution of the Sun-Earth-Moon system on an ultra-long time scale has provided energy sources and extra-terrestrial environmental conditions for the formation of the Earth system;the evolution of the Earth system on a long time scale has provided the material preconditions such as energy resources and suitable sphere environment for life birth and the human development;on a short time scale, the development of human civilization makes the human circle break through the Earth system, expanding the extraterrestrial civilization. With the co-evolution, there are three processes in the carbon cycle: inorganic carbon cycle, short-term organic carbon cycle and long-term organic carbon cycle, which records human immoderate utilization of fossil energy and global sphere reforming activities, breaking the natural balance and closed-loop path of the carbon cycle of the Earth, causing the increase of greenhouse gases and global climate change, affecting human happiness and development. The energy transition is inevitable, and carbon neutrality must be realized. Building the green energy community is a fundamental measure to create the new energy system under carbon neutrality target. China is speeding up its energy revolution and developing a powerful energy nation. It is necessary to secure the cornerstone of the supply of fossil energy and forge a strong growing pole for green and sustainable development of new energy. China energy production and consumption structure will make a revolutionary transformation from the type of fossil energy domination to the type of new energy domination, depending on a high-level self-reliance of science and technology and a high-quality green energy system of cleaning, low-carbon, safety, efficiency and independence. Energy development has three major trends: low-carbon fossil energy, large-scale new energy and intelligent energy system, relying on the green innovation, contributing the green energy and constructing the green homeland. 展开更多
关键词 energy evolution earth system human civilization carbon neutrality carbon cycle global climate change technological innovation energy power
下载PDF
Analysis of the trend of global power sources based on comment emotion mining 被引量:3
19
作者 Shengxiang Zhang Chao Shi +2 位作者 Xin Jiang Ying Zhang Lu Zhang 《Global Energy Interconnection》 2020年第3期283-291,共9页
In recent years,renewable energy technologies have been developed vigorously,and related supporting policies have been issued.The developmental trend of different energy sources directly affects the future development... In recent years,renewable energy technologies have been developed vigorously,and related supporting policies have been issued.The developmental trend of different energy sources directly affects the future developmental pattern of the energy and power industry.Energy trend research can be quantified through data statistics and model calculations;however,parameter settings and optimization are difficult,and the analysis results sometimes do not reflect objective reality.This paper proposes an energy and power information analysis method based on emotion mining.This method collects energy commentary news and literature reports from many authoritative media around the world and builds a convolutional neural network model and a text analysis model for topic classification and positive/negative emotion evaluation,which helps obtain text evaluation matrixes for all collected texts.Finally,a long-short-term memory model algorithm is employed to predict the future development prospects and market trends for various types of energy based on the analyzed emotions in different time spans.Experimental results indicate that energy trend analysis based on this method is consistent with the real scenario,has good applicability,and can provide a useful reference for the development of energy and power resources and of other industry areas as well. 展开更多
关键词 Global energy and power trend Topic classification Text emotion analysis CNN LSTM
下载PDF
Bendable tube-shaped supercapacitor based on reduced graphene oxide and Prussian blue coated carbon fiber yarns for energy storage 被引量:4
20
作者 Mohd.Khalid Ana M.B.Honorato 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期866-873,共8页
Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high e... Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high energy and power capable by using economically and environmentally viable materials. Here,we report reduced graphene oxide(r GO) and Prussian blue(PB) coated CFY, derived from a facile electrochemical process at room temperature for supercapacitor electrodes. The PB coated CFY and r GO coated CFY electrodes exhibit the excellent gravimetric capacitance of 339 F/g and 160.2 F/g, respectively, in aqueous KCl electrolyte in three-electrode cell configuration. When we coupled these electrodes inside the flexible plastic tube and separated by the electrolyte wet filter paper in order to construct flexible architecture, the resulting device delivers excellent specific energy of 52.1 Wh/kg and 26.5 Wh/kg with offering specific power of 3100 W/kg and 14400 W/kg respectively, under a wide operating potential of1.8 V with excellent rate capability. The device shows high tolerance towards bending, and retained its efficiency to the capacitance after being bent at an angle of 360° for 200 bending cycles. 展开更多
关键词 Carbon fiber yarns Bendable supercapacitor energy density power density
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部