A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC-DC buck converter and a followed low-dropout regulator (LDO). The pulsewidth-modulation ...A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC-DC buck converter and a followed low-dropout regulator (LDO). The pulsewidth-modulation (PWM) control method is adopted for better noise performance. An improved low-power highfrequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC-DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB.展开更多
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurizatio...As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurization is inevitable in China, however, it is rather difficult to reach the stipulated standards without any compulsory administrative measures of the government. What are the exact difficulties and solutions for the desulphurization in power plants?展开更多
This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering d...This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.展开更多
In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and pr...In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and prove convergence of formal so- lutions under conditions. -We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function.展开更多
The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with t...The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.展开更多
Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of th...Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of the considered hyperbolic mean curvature flow are presented.At the same time,some group invariant solutions are computed through reduced equations.In particular,we construct explicit solutions by applying the power series method.Furthermore,the convergence of the solutions of power series is certificated.Finally,conservation laws of the hyperbolic mean curvature flow are established via Ibragimov's approach.展开更多
The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge condit...The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge conditions. It is assumed that the viscoelastic material properties vary in the transverse and radial directions simultaneously. The complex modulus approach is employed in conjunction with the elastic-viscoelastic correspondence principle to obtain the solution. The governing equations are solved by means of a power series solution. Finally, a sensitivity analysis including evaluation of effects of various edge conditions, thickness variations, coefficients of the elastic foundation, and material loss factor and heterogeneity on the natural frequencies and modal loss factors is accomplished.展开更多
文摘A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC-DC buck converter and a followed low-dropout regulator (LDO). The pulsewidth-modulation (PWM) control method is adopted for better noise performance. An improved low-power highfrequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC-DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB.
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
文摘As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurization is inevitable in China, however, it is rather difficult to reach the stipulated standards without any compulsory administrative measures of the government. What are the exact difficulties and solutions for the desulphurization in power plants?
基金supported by the National Natural Science Foundation of China under Project 52007133 and U22B20100。
文摘This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.
文摘In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and prove convergence of formal so- lutions under conditions. -We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function.
基金Project supported by the National Natural Science Foundation of China (No. 10472076).
文摘The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition, the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, and buckling time is given.
基金Supported by the Natural Science Foundation of Shanxi(202103021224068).
文摘Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of the considered hyperbolic mean curvature flow are presented.At the same time,some group invariant solutions are computed through reduced equations.In particular,we construct explicit solutions by applying the power series method.Furthermore,the convergence of the solutions of power series is certificated.Finally,conservation laws of the hyperbolic mean curvature flow are established via Ibragimov's approach.
文摘The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge conditions. It is assumed that the viscoelastic material properties vary in the transverse and radial directions simultaneously. The complex modulus approach is employed in conjunction with the elastic-viscoelastic correspondence principle to obtain the solution. The governing equations are solved by means of a power series solution. Finally, a sensitivity analysis including evaluation of effects of various edge conditions, thickness variations, coefficients of the elastic foundation, and material loss factor and heterogeneity on the natural frequencies and modal loss factors is accomplished.