This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
The application of machine learning(ML)-based methods to the study of thermoelectric(TE)materials is promising.Although conventional ML algorithms can achieve high prediction performance,their lack of interpretability...The application of machine learning(ML)-based methods to the study of thermoelectric(TE)materials is promising.Although conventional ML algorithms can achieve high prediction performance,their lack of interpretability severely obstructs researchers from extracting material-oriented insights from ML models.In this work,high ML-based prediction performance was achieved with respect to TE power factors(PFs),and the results were well understood by the SHapley Additive exPlanations(SHAP),a method to identify the correlations between targets and descriptors.We designed a robust PF prediction model for diamond-like compounds via a stacking technique,and the model achieved a coefficient of determination value above 0.95 on the test set.From the SHAP analysis,the PFs were negatively correlated with electronegativity and positively correlated with the descriptor“volume per atom”based on the previously reported dataset.TE domain knowledge was adopted to understand these correlations.This work shows that ML models can achieve high accuracy while exhibiting good interpretability,making them useful for materials scientists.展开更多
MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for th...MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.展开更多
In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. ...In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stag...A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the back- stage adopts digital pulse width modulation ( PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.展开更多
This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase perm...This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.展开更多
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both hig...Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW.m 1 .K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.展开更多
In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. T...In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.展开更多
The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load...The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.展开更多
An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change...An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.展开更多
This paper reports the converter topologies which are employed for better Power Factor Correction at the input side. The Power Factor Correction is an important factor when considering the Power Quality. Based on the ...This paper reports the converter topologies which are employed for better Power Factor Correction at the input side. The Power Factor Correction is an important factor when considering the Power Quality. Based on the converter topologies, the Bridgeless converters are preferred in order to reduce the number of switching devices, losses associated with it and improve the Power Quality further more. This paper investigates about the Power Factor performances and conduction losses of the Bridgeless Power Factor Corrector Converters which see through the benefits and limitations by analyzing the Bridgeless Buck-Boost Converter, Bridgeless SEPIC converter and Bridgeless CUK converter. The resultant voltage is fed to the BLDC motor which is rapidly replacing the Induction motor for its better operating characteristics. These strategies are being analyzed using the MATLAB/Simulink software and the results are verified through the experimental analysis. The converter choice is preferred through the performance characteristics and Power Factor Correction at the supply. The Power Factor obtained should be within the acceptable limits under IEC 61000-3-2 standards.展开更多
On the basis of welding transformer circuit model, a new measuring method was proposed. This method measures the peak angle of the welding current, and then calculates the dynamic power factor in each half-wave. An ar...On the basis of welding transformer circuit model, a new measuring method was proposed. This method measures the peak angle of the welding current, and then calculates the dynamic power factor in each half-wave. An artificial neural network is trained and used to generate simulation data for the analytical solution, i.e. a high-order binary polynomial, which can be easily adopted to calculate the power factor online. The tailored sensing and computing system ensures that the method possesses a real-time computational capacity and satisfying accuracy. A DSP-based resistance spot welding monitoring system was developed to perform ANN computation. The experimental results suggest that this measuring method is feasible.展开更多
In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this mot...In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this motor is analyzed by computer simulation. By comparison of the tested and computed results, which are in good agreement, the dynamic model and simulative method are verified.展开更多
The problem of harmonic pollution has brought wide attention with the increase of power customers. The adoption of the technology of active power factor correction (APFC) with advanced high frequency power converter i...The problem of harmonic pollution has brought wide attention with the increase of power customers. The adoption of the technology of active power factor correction (APFC) with advanced high frequency power converter is a more efficient solution to the problem of harmonic pollution. A single stage isolated high power factor AC/DC converter, which features wide range DC output, high power factor, lower harmonic pollution in input current, and phase shift PWM full bridge circuit can achieve soft switching. The principle of the circuit topology and the reasons of voltage surges across the power switch are analyzed. Experiment results illustrate that this circuit has the advantages of high power factor and lower harmonic distortion.展开更多
This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power...This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.展开更多
Deduced the relationship between the power factor (PF) and the angular fre-quency according to the simplified equivalent circuit of asynchronous motor, forming a power factor auto-control system. An anti-interference ...Deduced the relationship between the power factor (PF) and the angular fre-quency according to the simplified equivalent circuit of asynchronous motor, forming a power factor auto-control system. An anti-interference circuit was also introduced in the middle voltage link of inverter to avoid the shift of the optimum PF point caused by the change of the load and the reliable run of the control system was assured. The experi-ment results show that it has a good self-adaptation in the whole scope of speed ad-justment and an obvious economization on energy while it runs under load.展开更多
A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain ...A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain value,and zero voltage switching (ZVS) can be achieved. The voltage stress and switching loss are both decreased. In range of the whole load,power factors can be always more than 97%,and the highest efficiency can reach 88%.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
基金The work of this paper was supported by the National Key R&D Programs of China(No.2017YFB0701501 and 2018YFB0703600).
文摘The application of machine learning(ML)-based methods to the study of thermoelectric(TE)materials is promising.Although conventional ML algorithms can achieve high prediction performance,their lack of interpretability severely obstructs researchers from extracting material-oriented insights from ML models.In this work,high ML-based prediction performance was achieved with respect to TE power factors(PFs),and the results were well understood by the SHapley Additive exPlanations(SHAP),a method to identify the correlations between targets and descriptors.We designed a robust PF prediction model for diamond-like compounds via a stacking technique,and the model achieved a coefficient of determination value above 0.95 on the test set.From the SHAP analysis,the PFs were negatively correlated with electronegativity and positively correlated with the descriptor“volume per atom”based on the previously reported dataset.TE domain knowledge was adopted to understand these correlations.This work shows that ML models can achieve high accuracy while exhibiting good interpretability,making them useful for materials scientists.
文摘MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
文摘In this paper we report a kind of fast-scale instability occurring in the single-ended primary inductance converter (SEPIC) power factor pre-regulator, which is designed to operate in discontinuous conduction mode. Main results are given by exact cycle-by-cycle computer simulations as well as theoretical analysis. It is found that the instability phenomenon manifests itself as a fast-scale bifurcation at the switching period, which implies the occurrence of border collision bifurcation, or is related to the transition of the regular operating mode of the SEPIC. According to the theoretical analysis and simulation results, the effects of parameters on system stability, and the locations of the bifurcation points are confirmed. Moreover, the effects of such an instability on power factor and switching stress are also discussed. Finally, the occurrence of the asymmetric bifurcation locations is investigated. The results show that this work provides a convenient means of predicting stability boundaries which can facilitate the selection of the practical parameters.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘A novel inverter power source is developed characterized with constant output current and unit power factor input. Digital signal processor ( DSP ) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the back- stage adopts digital pulse width modulation ( PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.
基金This work was supported in part by the National Natural Science Foundation of China(51807098,61673226)and the Six Talent Peaks Project in Jiangsu Province(2015-JY-028).
文摘This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.
基金supported by the National Young 1000 Talent Plan Chinathe Pujiang Talent Plan in Shanghai,China+2 种基金the National Natural Science Foundation of China(Grant Nos.61322407 and 11474058)the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(Grant No.J1103204)the National Basic Research Program of China(Grant No.2011CB921803)
文摘Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW.m 1 .K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.
基金supported by Delta Power Electronic Science and Education Development in 2007 (Grant No.DRES2007002)
文摘In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.
文摘The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.
文摘An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.
文摘This paper reports the converter topologies which are employed for better Power Factor Correction at the input side. The Power Factor Correction is an important factor when considering the Power Quality. Based on the converter topologies, the Bridgeless converters are preferred in order to reduce the number of switching devices, losses associated with it and improve the Power Quality further more. This paper investigates about the Power Factor performances and conduction losses of the Bridgeless Power Factor Corrector Converters which see through the benefits and limitations by analyzing the Bridgeless Buck-Boost Converter, Bridgeless SEPIC converter and Bridgeless CUK converter. The resultant voltage is fed to the BLDC motor which is rapidly replacing the Induction motor for its better operating characteristics. These strategies are being analyzed using the MATLAB/Simulink software and the results are verified through the experimental analysis. The converter choice is preferred through the performance characteristics and Power Factor Correction at the supply. The Power Factor obtained should be within the acceptable limits under IEC 61000-3-2 standards.
基金The National Natural Science Foundation of China (No 50575145)
文摘On the basis of welding transformer circuit model, a new measuring method was proposed. This method measures the peak angle of the welding current, and then calculates the dynamic power factor in each half-wave. An artificial neural network is trained and used to generate simulation data for the analytical solution, i.e. a high-order binary polynomial, which can be easily adopted to calculate the power factor online. The tailored sensing and computing system ensures that the method possesses a real-time computational capacity and satisfying accuracy. A DSP-based resistance spot welding monitoring system was developed to perform ANN computation. The experimental results suggest that this measuring method is feasible.
文摘In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this motor is analyzed by computer simulation. By comparison of the tested and computed results, which are in good agreement, the dynamic model and simulative method are verified.
文摘The problem of harmonic pollution has brought wide attention with the increase of power customers. The adoption of the technology of active power factor correction (APFC) with advanced high frequency power converter is a more efficient solution to the problem of harmonic pollution. A single stage isolated high power factor AC/DC converter, which features wide range DC output, high power factor, lower harmonic pollution in input current, and phase shift PWM full bridge circuit can achieve soft switching. The principle of the circuit topology and the reasons of voltage surges across the power switch are analyzed. Experiment results illustrate that this circuit has the advantages of high power factor and lower harmonic distortion.
文摘This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.
基金Supported by Liaoning Educational Foundation(202183386)
文摘Deduced the relationship between the power factor (PF) and the angular fre-quency according to the simplified equivalent circuit of asynchronous motor, forming a power factor auto-control system. An anti-interference circuit was also introduced in the middle voltage link of inverter to avoid the shift of the optimum PF point caused by the change of the load and the reliable run of the control system was assured. The experi-ment results show that it has a good self-adaptation in the whole scope of speed ad-justment and an obvious economization on energy while it runs under load.
文摘A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain value,and zero voltage switching (ZVS) can be achieved. The voltage stress and switching loss are both decreased. In range of the whole load,power factors can be always more than 97%,and the highest efficiency can reach 88%.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.