Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only ...Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only a few limited studies. The purpose of this study was to determine the validity and reproducibility of the VPM by comparing it to the SRM. The VPM validity was tested by (1) a submaximal incremental test, (2) submaximal constant power test, (3) sprint test, and (4) a field test. The reliability of the VPM was tested by repeating the laboratory tests 10 times over a 6 week span. Significant differences (P = 0.046) were found between the mean POSRM (178 ± 1.8 W) and POVPM (163.5 ± 14.7 W) for the submaximal constant-power test. No significant differences were found between the POMAX SRM and the POMAx VPM. The reproducibility of the VPM was lower than the SRM (CV = 8.52 ±4.0 vs 3.48 ± 1.9, 10.66% vs 5.50%, and 67.7% vs 55.3% for the submaximal incremental test, submaximal constant-power test, and field test respectively). The POVPM appears to underestimate the POSRM and is less valid and reliable across various cycling efforts.展开更多
Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opport...Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.展开更多
Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency prog...Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency programs that can be managed by the household owners. This paper presents a simple yet functional non-intrusive method for electric power measurement that can be applied in energy efficiency programs, in order to provide a better knowledge of the energy consumption of the appliances in a home.展开更多
针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳...针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳米管作为吸收材料,使用精密减薄抛光工艺和溅射电极工艺等工艺技术,完成了新型热释电太赫兹探测器的设计与制作。并利用该探测器设计了一款太赫兹功率计,经测试,该功率计在0.1~30 THz宽频段、0.5~100 m W大功率动态范围内,功率测量准确度达到了±10%,综合指标达到国际同类产品先进水平,应用效果良好。展开更多
文摘Mobile power meters allow for cyclists to monitor power output (PO) during training and competition. The Garrnin Vector power meter (VPM) measures PO at the pedal compared to the crank and has been tested in only a few limited studies. The purpose of this study was to determine the validity and reproducibility of the VPM by comparing it to the SRM. The VPM validity was tested by (1) a submaximal incremental test, (2) submaximal constant power test, (3) sprint test, and (4) a field test. The reliability of the VPM was tested by repeating the laboratory tests 10 times over a 6 week span. Significant differences (P = 0.046) were found between the mean POSRM (178 ± 1.8 W) and POVPM (163.5 ± 14.7 W) for the submaximal constant-power test. No significant differences were found between the POMAX SRM and the POMAx VPM. The reproducibility of the VPM was lower than the SRM (CV = 8.52 ±4.0 vs 3.48 ± 1.9, 10.66% vs 5.50%, and 67.7% vs 55.3% for the submaximal incremental test, submaximal constant-power test, and field test respectively). The POVPM appears to underestimate the POSRM and is less valid and reliable across various cycling efforts.
文摘Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.
文摘Currently a large effort is being done with the intention to educate people about how much energy each electrical appliance uses in their houses, since this knowledge is the fundamental basis of energy efficiency programs that can be managed by the household owners. This paper presents a simple yet functional non-intrusive method for electric power measurement that can be applied in energy efficiency programs, in order to provide a better knowledge of the energy consumption of the appliances in a home.
文摘针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳米管作为吸收材料,使用精密减薄抛光工艺和溅射电极工艺等工艺技术,完成了新型热释电太赫兹探测器的设计与制作。并利用该探测器设计了一款太赫兹功率计,经测试,该功率计在0.1~30 THz宽频段、0.5~100 m W大功率动态范围内,功率测量准确度达到了±10%,综合指标达到国际同类产品先进水平,应用效果良好。