A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationsh...A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.展开更多
A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulat...A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulation of an electromagnetic(EM) field to design and optimize the 140 GHz high-power directional coupler. In addition, we simulated the double-aperture directional coupler by using three-dimensional(3D) EM simulation software, in which the central frequency is 140 GHz, coupling factor is about –70 dB, and directivity is greater than 17 dB. The results show that such a coupler is a viable tool for power measurement in high-power transmission systems.展开更多
The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protect...The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protection and the real bine monitoring has all been satisfied. The input precision of the fault current and the rated current has been assured respectively by applying the relay protection CT and measurement CT. The algorithm of FFT with or without the difference has remarkably raised the precision of the protective measurement and removed the influence of the attenuation DC component in the fault current. Thus the accuracy and reliability of the protective trigger has been raised greatly.展开更多
Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart...Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart meter on the main electrical panel board to monitor consumption if load at each circuit, enable user to monitor power consumption at each node (power outlet) only by operating a smart digital meter and an STDR circuitry on each circuit at the main electrical panel board. This paper introduces this method and examines it on dead-wire and energized wire with a load connected across it. Experimental results are demonstrated for both types. Test result show the potential application of this approach to provide consumption information and potential cost saving via feedback for users.展开更多
A power monitoring and protection system based on an embedded processor was designed for the junction boxes(JBs) of an experimental seafloor observatory network in China. The system exhibits high reliability, fast res...A power monitoring and protection system based on an embedded processor was designed for the junction boxes(JBs) of an experimental seafloor observatory network in China. The system exhibits high reliability, fast response, and high real-time performance. A two-step power management method which uses metal-oxide-semiconductor field-effect transistors(MOSFETs) and a mechanical contactor in series was adopted to generate a reliable power switch, to limit surge currents and to facilitate automatic protection. Grounding fault diagnosis and environmental monitoring were conducted by designing a grounding fault detection circuit and by using selected sensors, respectively. The data collected from the JBs must be time-stamped for analysis and for correlation with other events and data. A highly precise system time, which is necessary for synchronizing the times within and across nodes, was generated through the IEEE 1588(precision clock synchronization protocol for networked measurement and control systems) time synchronization method. In this method, time packets were exchanged between the grandmaster clock at the shore station and the slave clock module of the system. All the sections were verified individually in the laboratory prior to a sea trial. Finally, a subsystem for power monitoring and protection was integrated into the complete node system, installed in a frame, and deployed in the South China Sea. Results of the laboratory and sea trial experiments demonstrated that the developed system was effective, stable, reliable, and suitable for continuous deep-sea operation.展开更多
Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at ...Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.展开更多
In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been d...In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.展开更多
This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communi...This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.展开更多
The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different W...The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.展开更多
An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network tec...An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.展开更多
In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect ...In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.展开更多
In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have ...In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have always been an unresolved difficult problem. This papersolves it through decomposition of the power spectrum in multilayers using wavelet transform andextraction of the low frequency decomposition coefficient as the envelope information of the powerspectrum. Intelligent identification of the tool wear status is achieved in the drilling processthrough fusing the wavelet decomposition coefficient of the power spectrum by using a BP (BackPropagation) neural network. The experimental results show that the features of the power spectrumcan be extracted efficiently through this method, and the trained neural networks show highidentification precision and the ability of extension.展开更多
The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power mon...The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power monitoring as a study case,a remote visualization client,based on our proposed solutions,was developed for high-speed rail power quality monitoring to efficiently support power quality data analysis of the electricity business.The solutions collected data from monitoring stations deployed along the high-speed rail route and visualized the data set with a variety of visualization technologies to alert the specific stations of catastrophic events.The proposed solutions have been proved to be effective in supporting decision-making for the railway power scheduling and providing diagnosis information for quickly spotting any possible runtime failure in operation.展开更多
A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to dete...A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.展开更多
Structural assessment is prerequisite for proper maintenance of civil infrastructure.In the begining of this paper,modern inspection and monitoring methods are briefly reviewed.Experiences in applying image-based meth...Structural assessment is prerequisite for proper maintenance of civil infrastructure.In the begining of this paper,modern inspection and monitoring methods are briefly reviewed.Experiences in applying image-based methods for highway bridge inspection are described shortly afterward.Studies are then extended to explore technologies for power delivery infrastructure evaluation.Typical power line components are first introduced. Structural analyses show complicated coupling phenomena in the power line system;and its vulnerability is intensified by extreme environment or human induced events.As a main interest,the state-of-art of power line inspection is summarized.Both visual observations and inspections assisted with novel techniques are presented.Real time monitoring of the power line is also investigated in this paper.Technologies that have potentials for monitoring power cables,insulators,and support structures are identified.A conceptual integrated design is proposed by the authors through combining innovative inspection with promising monitoring methods to ensure a sustainable,smart power line.展开更多
A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain i...A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain in the power transmission lines system,and a monitoring center based on client–server model is established to process and display the sensing information.Several FBG-based power transmission line temperature sensors interrogated based on the developed multi-parameter real-time monitoring scheme is experimentally investigated.The result shows that the system is very useful.展开更多
The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles ov...The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.展开更多
基金the National Key Research and Development Program of China(Grant No.2018YFB1801003)the National Natural Science Foundation of China(Grant Nos.61525501 and 61827817)the Beijing Natural Science Foundation,China(Grant No.4192022).
文摘A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.
基金supported by International S&T Cooperation Program of China(No.2011DFA63190)National Natural Science Foundation of China(No.11275045)the International Cooperation Plan Program of Sichuan Province,China(No.M1701040113HH0001)
文摘A directional coupler in a miter bend was designed to monitor the microwave power of the transmission line in an electron cyclotron resonance heating(ECRH) system. It is based on aperture-coupling theory and simulation of an electromagnetic(EM) field to design and optimize the 140 GHz high-power directional coupler. In addition, we simulated the double-aperture directional coupler by using three-dimensional(3D) EM simulation software, in which the central frequency is 140 GHz, coupling factor is about –70 dB, and directivity is greater than 17 dB. The results show that such a coupler is a viable tool for power measurement in high-power transmission systems.
文摘The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protection and the real bine monitoring has all been satisfied. The input precision of the fault current and the rated current has been assured respectively by applying the relay protection CT and measurement CT. The algorithm of FFT with or without the difference has remarkably raised the precision of the protective measurement and removed the influence of the attenuation DC component in the fault current. Thus the accuracy and reliability of the protective trigger has been raised greatly.
文摘Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart meter on the main electrical panel board to monitor consumption if load at each circuit, enable user to monitor power consumption at each node (power outlet) only by operating a smart digital meter and an STDR circuitry on each circuit at the main electrical panel board. This paper introduces this method and examines it on dead-wire and energized wire with a load connected across it. Experimental results are demonstrated for both types. Test result show the potential application of this approach to provide consumption information and potential cost saving via feedback for users.
基金Project supported by the National High-Tech R&D Program(863 Program)of China(Nos.2012AA09A408 and 2012AA09A402)the National Natural Science Foundation of China(No.51409229)the Zhejiang Provincial Natural Science Foundation of China(No.LQ14E070002)
文摘A power monitoring and protection system based on an embedded processor was designed for the junction boxes(JBs) of an experimental seafloor observatory network in China. The system exhibits high reliability, fast response, and high real-time performance. A two-step power management method which uses metal-oxide-semiconductor field-effect transistors(MOSFETs) and a mechanical contactor in series was adopted to generate a reliable power switch, to limit surge currents and to facilitate automatic protection. Grounding fault diagnosis and environmental monitoring were conducted by designing a grounding fault detection circuit and by using selected sensors, respectively. The data collected from the JBs must be time-stamped for analysis and for correlation with other events and data. A highly precise system time, which is necessary for synchronizing the times within and across nodes, was generated through the IEEE 1588(precision clock synchronization protocol for networked measurement and control systems) time synchronization method. In this method, time packets were exchanged between the grandmaster clock at the shore station and the slave clock module of the system. All the sections were verified individually in the laboratory prior to a sea trial. Finally, a subsystem for power monitoring and protection was integrated into the complete node system, installed in a frame, and deployed in the South China Sea. Results of the laboratory and sea trial experiments demonstrated that the developed system was effective, stable, reliable, and suitable for continuous deep-sea operation.
基金This work has been supported by.Central University Research Fund(No.2016MS116,No.2016MS117,No.2018MS074)the National Natural Science Foundation(51677072).
文摘Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.
基金sponsored by National Natural Science Foundation of China(50975020)National Major Program of Science and Tech-nique(2009ZX04014-101)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalipality(PHR20090518)
文摘In view of characteristics of solar photovoltaic (PV) power station such as the decentralized layout and massive monitoring and control information, a solar PV power generation monitoring and control system has been designed. The system is designed into three layers namely the sensor and actuator layer, the PLC field monitoring and control layer and the remote network monitoring and control layer. Through ZigBee wireless network, PROFIBUS and GPRS wireless network, the system makes the three layers exchange information rapidly, and the system supervises not only various operational parameters of the power generating system but also weather changes as a way to change the solar tracking strategy of the PV power generating system and reduce the operating energy consumption of the system. Through the hardware redundant design of PLC central controller and the upper computer, the solar PV power station can be more secure and reliable when running.
基金supported by the State Grid Science and Technology Project (GEIRI-DL-71-17-002)
文摘This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.
文摘The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.
文摘An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.
文摘In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.
文摘In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have always been an unresolved difficult problem. This papersolves it through decomposition of the power spectrum in multilayers using wavelet transform andextraction of the low frequency decomposition coefficient as the envelope information of the powerspectrum. Intelligent identification of the tool wear status is achieved in the drilling processthrough fusing the wavelet decomposition coefficient of the power spectrum by using a BP (BackPropagation) neural network. The experimental results show that the features of the power spectrumcan be extracted efficiently through this method, and the trained neural networks show highidentification precision and the ability of extension.
基金the State Grid Corporation and Computer Science Experimental Center of Beihang University,China
文摘The visualization techniques were explored for power quality monitoring.And remote visualization solutions were proposed for highspeed rail power quality monitoring.Taking the Beijing-Shanghai highspeed rail power monitoring as a study case,a remote visualization client,based on our proposed solutions,was developed for high-speed rail power quality monitoring to efficiently support power quality data analysis of the electricity business.The solutions collected data from monitoring stations deployed along the high-speed rail route and visualized the data set with a variety of visualization technologies to alert the specific stations of catastrophic events.The proposed solutions have been proved to be effective in supporting decision-making for the railway power scheduling and providing diagnosis information for quickly spotting any possible runtime failure in operation.
文摘A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.
文摘Structural assessment is prerequisite for proper maintenance of civil infrastructure.In the begining of this paper,modern inspection and monitoring methods are briefly reviewed.Experiences in applying image-based methods for highway bridge inspection are described shortly afterward.Studies are then extended to explore technologies for power delivery infrastructure evaluation.Typical power line components are first introduced. Structural analyses show complicated coupling phenomena in the power line system;and its vulnerability is intensified by extreme environment or human induced events.As a main interest,the state-of-art of power line inspection is summarized.Both visual observations and inspections assisted with novel techniques are presented.Real time monitoring of the power line is also investigated in this paper.Technologies that have potentials for monitoring power cables,insulators,and support structures are identified.A conceptual integrated design is proposed by the authors through combining innovative inspection with promising monitoring methods to ensure a sustainable,smart power line.
文摘A multi-parameter real-time monitoring scheme for power transmission line is proposed and experimentally demonstrated.The Fiber Bragg Grating(FBG)sensors are used to sensing the information of temperature and strain in the power transmission lines system,and a monitoring center based on client–server model is established to process and display the sensing information.Several FBG-based power transmission line temperature sensors interrogated based on the developed multi-parameter real-time monitoring scheme is experimentally investigated.The result shows that the system is very useful.
文摘The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.