For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the ch...For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.展开更多
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p...To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.展开更多
Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Ra...Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.展开更多
With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS...This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al2O3 and Ni/SiO2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir-Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al2O3 showed the maximum benzene conversion (99.19%) at 130℃ for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO2. Furthermore, this catalyst presented high selectivity to benzene (75.26%) at 130℃. The catalytic performance (activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process.展开更多
Harvesting energy from ambient environment has been considered as a promising strategy for driving portable electronic devices in a sustainable way. A wind driven triboelectric-electromagnetic hybrid nanogenerator has...Harvesting energy from ambient environment has been considered as a promising strategy for driving portable electronic devices in a sustainable way. A wind driven triboelectric-electromagnetic hybrid nanogenerator has been fabricated to convert wind energy into electricity. It is composed of an electromagnetic generator(EMG) and a triboelectric nanogenerator(TENG) with the output power of 35 and 0.32 mW, respectively when the wind speed is 5 m/s. Generally, TENG shows a low current output with a high voltage output characteristic, on the contrary the EMG shows a high current output and a low voltage output. This hybrid nanogenerator overcomes these problems and exhibits comprehensive and efficient performance on scavenging energy.Moreover, in view of the output performance and charging ability of the hybrid nanogenerator, it shows high stability, making it suitable for charging capacitors or batteries and driving portable electronics sustainably. A new structure of integrated TENG and EMG was designed to harvest wind energy, which shows potential applications in portable and small device power supply system, especially in the areas of remote mountains, deserts, islands, etc., as emergency power supply.展开更多
This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a ...This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a low-IF GSM receiver.The IF can be adaptively selected between 100 and 130 kHz.Test result shows an improvement of phase error from 6.78°to 3.23°.Also a least mean squares(LMS) based IQ mismatch compensation algorithm is applied to improve image rejection ratio(IRR) for the desired signal along with strong adjacent channel interference.The IRR is improved from 29.1 to 44.3 dB in measurement.The design is verified in a low-IF GSM receiver fabricated in SMIC 0.13μm RF CMOS process with a working voltage of 1.2 V.展开更多
With the rapid development of unmanned aerial and underwater vehicles,various tasks,such as biodiversity monitoring,surveying,and mapping,as well as,search and rescue can now be completed in a single medium,either und...With the rapid development of unmanned aerial and underwater vehicles,various tasks,such as biodiversity monitoring,surveying,and mapping,as well as,search and rescue can now be completed in a single medium,either underwater or in the air.By systematically examining the water–air cross-medium locomotion of organisms,there has been growing interest in the development of aerial-aquatic vehicles.The goal of this review is to provide a detailed outline of the design and cross-medium theoretical research of the existing aerial-aquatic vehicles based on the research on the organisms capable of transiting between water and air.Although these designs and theoretical frameworks have been validated in many aerial-aquatic vehicles,there are still many problems that need to be addressed,such as inflexible underwater motion and unstable medium conversion.As a result,supplementation of the existing cross-medium biomimetic research,vehicle design,power selection,and cross-medium theory is urgently required to optimize the key technologies in detail.Therefore,by summarizing the existing designs and theoretical approaches on aerial-aquatic vehicles,including biomimetic research on water–air cross-medium locomotion in nature,different power selections,and cross-medium theoretical research,the relative problems and development trends on aerial-aquatic vehicles were thoroughly explored,providing significant help for the subsequent research process.展开更多
基金financial supports provided by the National Natural Science Foundation of China (No.51274202)the Fundamental Research Funds for the Central Universities (No.2013RC11)+3 种基金the Science and Technology Achievements Transformation Project of Jiangsu Province (No.BA2012068)the Natural Science Foundation of Jiangsu Province (Nos.BK20130199 and BK20131124)Ceeusro Prospective Joint Research Project of Jiangsu Province (No.BY2014028-01)Great Cultivating Special Project at China University of Mining and Technology (No.2014ZDPY16)
文摘For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.
基金Projects(U0937604,50876116)supported by the National Natural Science Foundation of ChinaProjects(2010QZZD0107,2014zzts192)supported by the Fundamental Research Funds for the Central Universities of China
文摘To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.
基金partially supported by the National Natural Science Foundation of China(61571225,61271255,61232016,U1405254)the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science and Technology)(Grant No.KJR1509)+2 种基金the PAPD fundthe CICAEET fundShenzhen Strategic Emerging Industry Development Funds(JSGG20150331160845693)
文摘Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
文摘This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al2O3 and Ni/SiO2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir-Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al2O3 showed the maximum benzene conversion (99.19%) at 130℃ for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO2. Furthermore, this catalyst presented high selectivity to benzene (75.26%) at 130℃. The catalytic performance (activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51722510,51905518 and 21603242)the Program for Taishan Scholars of Shandong Province(Grant No.ts20190965)+1 种基金the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC013)the“Innovation Leading Talents”Program of Qingdao in China(Grant No.19-3-2-23-zhc)。
文摘Harvesting energy from ambient environment has been considered as a promising strategy for driving portable electronic devices in a sustainable way. A wind driven triboelectric-electromagnetic hybrid nanogenerator has been fabricated to convert wind energy into electricity. It is composed of an electromagnetic generator(EMG) and a triboelectric nanogenerator(TENG) with the output power of 35 and 0.32 mW, respectively when the wind speed is 5 m/s. Generally, TENG shows a low current output with a high voltage output characteristic, on the contrary the EMG shows a high current output and a low voltage output. This hybrid nanogenerator overcomes these problems and exhibits comprehensive and efficient performance on scavenging energy.Moreover, in view of the output performance and charging ability of the hybrid nanogenerator, it shows high stability, making it suitable for charging capacitors or batteries and driving portable electronics sustainably. A new structure of integrated TENG and EMG was designed to harvest wind energy, which shows potential applications in portable and small device power supply system, especially in the areas of remote mountains, deserts, islands, etc., as emergency power supply.
基金supported by the Important National Science and Technology Specific Projects of China(No.2009ZX01031-003-002)the National High Technology Research and Development Program of China(No.2009AA011605)the National Natural Science Foundation of China(No.61076028)
文摘This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a low-IF GSM receiver.The IF can be adaptively selected between 100 and 130 kHz.Test result shows an improvement of phase error from 6.78°to 3.23°.Also a least mean squares(LMS) based IQ mismatch compensation algorithm is applied to improve image rejection ratio(IRR) for the desired signal along with strong adjacent channel interference.The IRR is improved from 29.1 to 44.3 dB in measurement.The design is verified in a low-IF GSM receiver fabricated in SMIC 0.13μm RF CMOS process with a working voltage of 1.2 V.
基金This work was supported by the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures and National Natural Science Foundation of China grant nos.51875281711 and 51861135306.
文摘With the rapid development of unmanned aerial and underwater vehicles,various tasks,such as biodiversity monitoring,surveying,and mapping,as well as,search and rescue can now be completed in a single medium,either underwater or in the air.By systematically examining the water–air cross-medium locomotion of organisms,there has been growing interest in the development of aerial-aquatic vehicles.The goal of this review is to provide a detailed outline of the design and cross-medium theoretical research of the existing aerial-aquatic vehicles based on the research on the organisms capable of transiting between water and air.Although these designs and theoretical frameworks have been validated in many aerial-aquatic vehicles,there are still many problems that need to be addressed,such as inflexible underwater motion and unstable medium conversion.As a result,supplementation of the existing cross-medium biomimetic research,vehicle design,power selection,and cross-medium theory is urgently required to optimize the key technologies in detail.Therefore,by summarizing the existing designs and theoretical approaches on aerial-aquatic vehicles,including biomimetic research on water–air cross-medium locomotion in nature,different power selections,and cross-medium theoretical research,the relative problems and development trends on aerial-aquatic vehicles were thoroughly explored,providing significant help for the subsequent research process.