Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC d...Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.展开更多
It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of th...It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.展开更多
High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch...High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.展开更多
A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ...A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ordinary gapless transformer could be used to develop a low cost AC voltage regulator (AVR) to provide better or comparable specifications with bulky ferro-resonant AVR types. One primary advantage of the technique is that digital control can be used to minimize harmonics. Commencing with a review of AC voltage regulator techniques for single phase power conditioning systems, an analysis and design aspects of this technique is presented with experimental results for AVRs. Guidelines on how to utilize the technique in a generalized basis is also summarized together with a summary of a technique for achieving harmonic control.展开更多
Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks ...Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.展开更多
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
Power Semiconductors are still the driving force for many power electronic systems.In this paper the development of the key power semiconductors devices for power supplies are shown,and their electrical performance di...Power Semiconductors are still the driving force for many power electronic systems.In this paper the development of the key power semiconductors devices for power supplies are shown,and their electrical performance discussed.Future directions of the major power semiconductor devices like the IGBT,Super Junction technology and SiC device will be explained.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic comp...Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.展开更多
Ideally,converter losses should be determined without using an excessive amount of simulation time.State-of-the-art power semiconductor models provide good accuracy,unfortunately they often require a very long simulat...Ideally,converter losses should be determined without using an excessive amount of simulation time.State-of-the-art power semiconductor models provide good accuracy,unfortunately they often require a very long simulation time.This paper describes how to estimate power losses from simulation using ideal switches combined with measured power loss data.The semiconductor behavior is put into a look-up table,which replaces the advanced semiconductor models and shortens the simulation time.To extract switching and conduction losses,a converter is simulated and the semiconductor power losses are estimated.Measurement results on a laboratory converter are compared with the estimated losses and a good agreement is shown.Using the ideal switch simulation and the post processing power estimation program,a ten to twenty fold increase in simulation speed is obtained,compared to simulations using advanced models of semiconductors.展开更多
In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been i...In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements.This study investigates the potential of Ag2BiI5 for near-infrared(NIR)-blind visible light photodetection,which is critical to emerging applications(e.g.,wearable optoelectronics and the Internet of Things).Self-powered photodetectors were realized and provided a near-constant≈100 mA W−1 responsivity through the visible,a NIR rejection ratio of>250,a long-wavelength responsivity onset matching standard colorimetric functions,and a linear photoresponse of>5 orders of magnitude.The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode.This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.展开更多
Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconduc...Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconductor materials in high-power electronic devices. The research first compares the physical properties of major wide bandgap materials (such as silicon carbide SiC and gallium nitride GaN), analyzing their advantages over traditional silicon materials. Through theoretical calculations and experimental data analysis, the study assesses the performance of these materials in terms of high breakdown field, high thermal conductivity, and high electron saturation velocity. The research focuses on the application of SiC and GaN devices in power electronics, including high-voltage DC transmission, electric vehicle drive systems, and renewable energy conversion. The study also discusses the potential of wide bandgap materials in RF and microwave applications. However, the research also points out the challenges faced by wide bandgap semiconductor technology, such as material defect control, device reliability, and cost issues. To address these challenges, the study proposes solutions, including improving epitaxial growth techniques, optimizing device structure design, and developing new packaging methods. Finally, the research looks ahead to the prospects of wide bandgap semiconductors in emerging application areas such as quantum computing and terahertz communications. This study provides a comprehensive theoretical foundation and technology roadmap for the application of wide bandgap semiconductor materials in high-power electronic devices, contributing to the development of next-generation high-efficiency energy conversion and management systems.展开更多
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The...Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.展开更多
基金This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under ARPA-E and Power America Program and the CURENT Industry Partnership Program.
文摘Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.
文摘It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.
基金supported by the National Natural Science Foundation of China (Nos.50277016,50577028)Specialized Research Fund for the Doctoral Program of Higher Education (No.20050487044)
文摘High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.
文摘A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ordinary gapless transformer could be used to develop a low cost AC voltage regulator (AVR) to provide better or comparable specifications with bulky ferro-resonant AVR types. One primary advantage of the technique is that digital control can be used to minimize harmonics. Commencing with a review of AC voltage regulator techniques for single phase power conditioning systems, an analysis and design aspects of this technique is presented with experimental results for AVRs. Guidelines on how to utilize the technique in a generalized basis is also summarized together with a summary of a technique for achieving harmonic control.
文摘Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
文摘Power Semiconductors are still the driving force for many power electronic systems.In this paper the development of the key power semiconductors devices for power supplies are shown,and their electrical performance discussed.Future directions of the major power semiconductor devices like the IGBT,Super Junction technology and SiC device will be explained.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
文摘Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.
文摘Ideally,converter losses should be determined without using an excessive amount of simulation time.State-of-the-art power semiconductor models provide good accuracy,unfortunately they often require a very long simulation time.This paper describes how to estimate power losses from simulation using ideal switches combined with measured power loss data.The semiconductor behavior is put into a look-up table,which replaces the advanced semiconductor models and shortens the simulation time.To extract switching and conduction losses,a converter is simulated and the semiconductor power losses are estimated.Measurement results on a laboratory converter are compared with the estimated losses and a good agreement is shown.Using the ideal switch simulation and the post processing power estimation program,a ten to twenty fold increase in simulation speed is obtained,compared to simulations using advanced models of semiconductors.
基金financial support from the National Natural Science Foundation of China (61750110517 and 61805166)the Jiangsu Province Natural Science Foundation (BK20170345)+3 种基金supported by the Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 Projectthe Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements.This study investigates the potential of Ag2BiI5 for near-infrared(NIR)-blind visible light photodetection,which is critical to emerging applications(e.g.,wearable optoelectronics and the Internet of Things).Self-powered photodetectors were realized and provided a near-constant≈100 mA W−1 responsivity through the visible,a NIR rejection ratio of>250,a long-wavelength responsivity onset matching standard colorimetric functions,and a linear photoresponse of>5 orders of magnitude.The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode.This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.
文摘Wide bandgap semiconductor materials are driving revolutionary improvements in the performance of high-power electronic devices. This study systematically evaluates the application prospects of wide bandgap semiconductor materials in high-power electronic devices. The research first compares the physical properties of major wide bandgap materials (such as silicon carbide SiC and gallium nitride GaN), analyzing their advantages over traditional silicon materials. Through theoretical calculations and experimental data analysis, the study assesses the performance of these materials in terms of high breakdown field, high thermal conductivity, and high electron saturation velocity. The research focuses on the application of SiC and GaN devices in power electronics, including high-voltage DC transmission, electric vehicle drive systems, and renewable energy conversion. The study also discusses the potential of wide bandgap materials in RF and microwave applications. However, the research also points out the challenges faced by wide bandgap semiconductor technology, such as material defect control, device reliability, and cost issues. To address these challenges, the study proposes solutions, including improving epitaxial growth techniques, optimizing device structure design, and developing new packaging methods. Finally, the research looks ahead to the prospects of wide bandgap semiconductors in emerging application areas such as quantum computing and terahertz communications. This study provides a comprehensive theoretical foundation and technology roadmap for the application of wide bandgap semiconductor materials in high-power electronic devices, contributing to the development of next-generation high-efficiency energy conversion and management systems.
基金Project supported by the National Natural Science Foundation of China(Nos.11672223,11402187,and 51178390)the China Postdoctoral Science Foundation(No.2014M560762)the Fundamental Research Funds for the Central Universities of China(No.xjj2015131)
文摘Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.