Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot...Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.展开更多
In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, ...In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power syste...Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power system. An effective method to resolve this problem is to accurately predict PV power. In this study, an innovative short-term hybrid prediction model(i.e., HKSL) of PV power is established. The model combines K-means++, optimal similar day approach,and long short-term memory(LSTM) network. Historical power data and meteorological factors are utilized. This model searches for the best similar day based on the results of classifying weather types. Then, the data of similar day are inputted into the LSTM network to predict PV power. The validity of the hybrid model is verified based on the datasets from a PV power station in Shandong Province, China. Four evaluation indices, mean absolute error, root mean square error(RMSE),normalized RMSE, and mean absolute deviation, are employed to assess the performance of the HKSL model. The RMSE of the proposed model compared with those of Elman, LSTM, HSE(hybrid model combining similar day approach and Elman), HSL(hybrid model combining similar day approach and LSTM), and HKSE(hybrid model combining K-means++,similar day approach, and LSTM) decreases by 66.73%, 70.22%, 65.59%, 70.51%, and 18.40%, respectively. This proves the reliability and excellent performance of the proposed hybrid model in predicting power.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated...The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.展开更多
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP...The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.展开更多
At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems ba...At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.展开更多
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas...While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.展开更多
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D...There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon ...Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.展开更多
Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits ex...Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
文摘Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.
文摘In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
基金supported by the No. 4 National Project in 2022 of the Ministry of Emergency Response (2022YJBG04)the International Clean Energy Talent Program (201904100014)。
文摘Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power system. An effective method to resolve this problem is to accurately predict PV power. In this study, an innovative short-term hybrid prediction model(i.e., HKSL) of PV power is established. The model combines K-means++, optimal similar day approach,and long short-term memory(LSTM) network. Historical power data and meteorological factors are utilized. This model searches for the best similar day based on the results of classifying weather types. Then, the data of similar day are inputted into the LSTM network to predict PV power. The validity of the hybrid model is verified based on the datasets from a PV power station in Shandong Province, China. Four evaluation indices, mean absolute error, root mean square error(RMSE),normalized RMSE, and mean absolute deviation, are employed to assess the performance of the HKSL model. The RMSE of the proposed model compared with those of Elman, LSTM, HSE(hybrid model combining similar day approach and Elman), HSL(hybrid model combining similar day approach and LSTM), and HKSE(hybrid model combining K-means++,similar day approach, and LSTM) decreases by 66.73%, 70.22%, 65.59%, 70.51%, and 18.40%, respectively. This proves the reliability and excellent performance of the proposed hybrid model in predicting power.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金supported in part by the National Key Research and Development Program of China(No.2017YFE0300104)in part by National Natural Science Foundation of China(No.51821005)。
文摘The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.
基金supported by the Natural Science Foundation of Fujian Province,China(No.2022J01566).
文摘The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.
文摘At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1。
文摘While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.
基金funded by National Natural Science Foundation of China (52177074).
文摘There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
基金supported by the Shanghai Sailing Program (Grant No. 22YF1442000)the Key Laboratory of Middle Atmosphere and Global Environment Observation(Grant No. LAGEO-2021-07)+1 种基金the National Natural Science Foundation of China (Grant No. 41975035)Jiaxing University (Grant Nos. 00323027AL and CD70522035)。
文摘Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.
文摘Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.