Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te...Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.展开更多
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power ...Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.展开更多
Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous...Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.展开更多
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promot...As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs.展开更多
This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on elec...This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on electric fields.The complex resonant compensation networks are used to make the CPT system work in the resonant condition.The resonant voltage is always very high.It will be a big challenge to the human safety.In this paper,a virtual electrons periodic reciprocating flow theory is proposed for the CPT system.In one switching cycle,the electrons firstly flow in the forward direction through the forward path and then flow in the inverse direction through the inverse path.The CPT system has been deeply studied with the vacuum dielectric or the air dielectric.However,for the CPT system,there are few papers to show the underwater application.In this paper,an undersea four-plate CPT system is designed and studied in the underwater condition.The two coupling capacitors and other elements of the CPT system could build a closed-loop path.A small value inductor is adapted as a resonant compensation network for the four-plate CPT system.The DC voltage is inverted to the AC voltage in the primary side with the single-phase full-bridge inverter.The resonant voltage is rectified to the DC voltage in the secondary side with the single-phase full-bridge diode rectifier.A 100 W power level CPT system is constructed to verify the theory analysis and the calculation.The theory analysis is verified by the simulated and experimental results.The stable output voltage and load power are achieved in this paper.展开更多
As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we...As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs.展开更多
Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency....Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe...Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.展开更多
Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,a...Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,an implantable magnetic coupling resonant WPT system in-tegrated with a metasurface element working at 430 MHz is presented.Similar planar copper coil components for the transmitting and receiving structures are used to construct the primary system,and then the metasurface element is integrated to constitute the whole WPT system.The effects of the distances between the transmitting coil and skin surface,between the skin surface,and receiv-ing coil are discussed.The results show that the efficiency will be enhanced by 38-50 dB integrat-ing with the metasurface.展开更多
The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the app...The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.展开更多
In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from t...In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.展开更多
As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the k...As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%.展开更多
Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power tr...Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.展开更多
Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network....Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.展开更多
In this paper,we study the rate-energy tradeoff for wireless simultaneous in-formation and power transfer in full-duplex and half-duplex scenarios.To this end,the weighting function of energy efficiency and transmissi...In this paper,we study the rate-energy tradeoff for wireless simultaneous in-formation and power transfer in full-duplex and half-duplex scenarios.To this end,the weighting function of energy efficiency and transmission rate,as rate-energy tradeoff metric is first introduced and the metric optimization problem is formulated.Applying Karush-Kuhn-Tucker(KKT)conditions for Lagrangian optimality and a series of mathematical approximations,the metric optimization problem can be simplified.The closed-form solution of the power ratio is obtained,building direct relationship between power ratio and the rate-energy tradeoff metric.By choosing power ratio,one can make the tradeoff between information rate and harvested power in a straightforward and efficient way.Using the method similar to the half duplex systems,the optimal power ratio can be obtained in the full duplex systems,so as to balance the information transmission rate and energy transmission efficiency.Simulation results validate that the information rate is non-increasing with harvested power in half-duplex systems and the tradeoff of information rate and harvested power can be simply made.In the full duplex systems,the power ratio solution of the rate-energy tradeoff metric optimization problem can be used as the approximate optimal solution of the optimization problem and the approximation error is negligible.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金supported in part by the National Natural Science Foundation of China under Grant 62171187the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011476+1 种基金the Science and Technology Program of Guangzhou under Grant 201904010373the Key Program of Marine Economy Development (Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020]009)。
文摘Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.
基金This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1201003.
文摘Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.
基金the National Key Research and Development Program of China under Grant Nos.2017YFA0700201,2017YFA0700202,2017YFA0700203,and 2021YFA1401001the 111 Project under Grant No.111⁃2⁃05,National Natural Science Foundation of China under Grant No.62001342+1 种基金Key Research and Development Program of Shaanxi under Grant No.2021TD⁃07Outstanding Youth Science Foundation of Shaanxi Province under Grant No.2019JC⁃15.
文摘Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101)the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284, 11674247, and 11974261)+3 种基金Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900)the China Postdoctoral Science Foundation (Grant Nos. 2019TQ0232 and 2019M661605)the Shanghai Super Postdoctoral Incentive ProgramFundamental Research Funds for the Central Universities, China
文摘As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs.
基金supported by the National Natural Science Foundation of China under grant no.52107205China Postdoctoral Science Foundation under grant no.2018M643700+2 种基金Scientific Research Project of Education Department of Shaanxi Province under grant no.18JS080Postdoctoral Research Program of Shaanxi Province under grant no.2018BSHYDZZ28Basic Research Project of Natural Science of Shaanxi Province under grant no.2020JQ-623.
文摘This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on electric fields.The complex resonant compensation networks are used to make the CPT system work in the resonant condition.The resonant voltage is always very high.It will be a big challenge to the human safety.In this paper,a virtual electrons periodic reciprocating flow theory is proposed for the CPT system.In one switching cycle,the electrons firstly flow in the forward direction through the forward path and then flow in the inverse direction through the inverse path.The CPT system has been deeply studied with the vacuum dielectric or the air dielectric.However,for the CPT system,there are few papers to show the underwater application.In this paper,an undersea four-plate CPT system is designed and studied in the underwater condition.The two coupling capacitors and other elements of the CPT system could build a closed-loop path.A small value inductor is adapted as a resonant compensation network for the four-plate CPT system.The DC voltage is inverted to the AC voltage in the primary side with the single-phase full-bridge inverter.The resonant voltage is rectified to the DC voltage in the secondary side with the single-phase full-bridge diode rectifier.A 100 W power level CPT system is constructed to verify the theory analysis and the calculation.The theory analysis is verified by the simulated and experimental results.The stable output voltage and load power are achieved in this paper.
基金supported by General Program of National Natural Science Foundation of China(No.62071090)Sichuan Science and Technology Program(No.2021YFH0014).
文摘As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs.
基金supported by the National Natural Science Foundation of China(61674049,U19A2053)State Key Lab of ASIC and System(2019KF003)the Fundamental Research Funds for Central Universities(JZ2019HGTB0092)。
文摘Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
基金Supported by the National Natural Science Foundation of China under Grant No 51377185
文摘Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB32040200).
文摘Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,an implantable magnetic coupling resonant WPT system in-tegrated with a metasurface element working at 430 MHz is presented.Similar planar copper coil components for the transmitting and receiving structures are used to construct the primary system,and then the metasurface element is integrated to constitute the whole WPT system.The effects of the distances between the transmitting coil and skin surface,between the skin surface,and receiv-ing coil are discussed.The results show that the efficiency will be enhanced by 38-50 dB integrat-ing with the metasurface.
基金funded by FCT (Fun- dacāo Ciência e Tecnologia) under grant PD/BD/128051/2016the Shift2Rail In2Stempo project (grant 777515)+3 种基金partially supported by FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933SYSTEC funded by FEDER funds through COMPETE2020by national funds through the FCT/MECco-funded by FEDER, in the scope of the PT2020 Partnership Agreement。
文摘The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.
基金supported in part by the National Natural Science Foundation of China(No.61401330,No.61371127)
文摘In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.
基金supported by the National Natural Science Foundation of China under Grant No.51574198Nanchong City 2018 Special Fund for City-School Cooperation under Grant No.18SXHZ0021
文摘As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%.
基金supported by National Nature Science Foundation of China(No.62171484)Zhuhai Fundamental and Application Research(No.ZH22017003210006PWC)Fundamental Research Funds for the Central Universities(No.21621420).
文摘Reconfigurable intelligent surface(RIS)employs passive beamforming to control the wireless propagation channel,which benefits the wireless communication capacity and the received energy efficiency of wireless power transfer(WPT)systems.Such beamforming schemes are classified as discrete and non-convex integer program-ming problems.In this paper,we propose a Monte-Carlo(MC)based random energy passive beamforming of RIS to achieve the maximum received power of electromagnetic(EM)WPT systems.Generally,the Gibbs sampling and re-sampling methods are employed to generate phase shift vector samples.And the sample with the maximum received power is considered the optimal solution.In order to adapt to the application scenarios,we develop two types of passive beamforming algorithms based on such MC sampling methods.The first passive beamforming uses an approximation of the integer programming as the initial sample,which is calculated based on the channel information.And the second one is a purely randomized algorithm with the only total received power feedback.The proposed methods present several advantages for RIS control,e.g.,fast convergence,easy implementation,robustness to the channel noise,and limited feedback requirement,and they are applicable even if the channel information is unknown.According to the simulation results,our proposed methods outperform other approxi-mation and genetic algorithms.With our methods,the WPT system even significantly improves the power effi-ciency in the nonline-of-sight(NLOS)environment.
基金the financial support of National Natural Science Foundation of China(NSFC),Grant No.61971102,61871076the Key Research and Development Program of Zhejiang Province under Grant No.2022C01093.
文摘Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.
基金The authors would like to thank the anonymous reviewers for their constructive comments and suggestionsThis work was supported by the National Natural Science Foundation of China(61701251,61801236,61806100)the Nation-al Science Foundation of Jiangsu Province(BK20160903,BK20170914).
文摘In this paper,we study the rate-energy tradeoff for wireless simultaneous in-formation and power transfer in full-duplex and half-duplex scenarios.To this end,the weighting function of energy efficiency and transmission rate,as rate-energy tradeoff metric is first introduced and the metric optimization problem is formulated.Applying Karush-Kuhn-Tucker(KKT)conditions for Lagrangian optimality and a series of mathematical approximations,the metric optimization problem can be simplified.The closed-form solution of the power ratio is obtained,building direct relationship between power ratio and the rate-energy tradeoff metric.By choosing power ratio,one can make the tradeoff between information rate and harvested power in a straightforward and efficient way.Using the method similar to the half duplex systems,the optimal power ratio can be obtained in the full duplex systems,so as to balance the information transmission rate and energy transmission efficiency.Simulation results validate that the information rate is non-increasing with harvested power in half-duplex systems and the tradeoff of information rate and harvested power can be simply made.In the full duplex systems,the power ratio solution of the rate-energy tradeoff metric optimization problem can be used as the approximate optimal solution of the optimization problem and the approximation error is negligible.