Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal fac...Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal face and, on this basis, established an automatic control model of powered supports for the coal plough face. We introduced the working principle of the powered support control system of the plough at the mining face. We established three advanced characteristics of this control system: response speed, reliability and easy maintenance of the system. As well, we briefly introduced, the principal function of primary and subordinate controllers and the realization of the communication system by a Single Bus. Ten controllers were constructed and tested in our laboratorium. The results show that the control model is practical and meets actual conditions. It provides a theoretical basis for designing a comouter control system for a oowered support system of a plough at a mining face.展开更多
This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high...This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.展开更多
Taking the chock shield supports as the object of study, methods formeasuring and calculating the external load of powered supports were discussed. Selecting the angleparameters as variables, the simple formulae of in...Taking the chock shield supports as the object of study, methods formeasuring and calculating the external load of powered supports were discussed. Selecting the angleparameters as variables, the simple formulae of interactive computation with respect to the workangles of a powered support were deduced and verified by an example. Furthermore, the formulaedetermining the magnitude, direction and action point of the external load were put forward. Theinvestigation results have provided a sound basis for the software design of the intelligentinstrument for load measuring of powered supports.展开更多
Fluid and solid interaction analysis of hydraulic support under the coming pressure of roof rocks was presented. The mathematical model of the system was proposed and numerical studies by the character line method wer...Fluid and solid interaction analysis of hydraulic support under the coming pressure of roof rocks was presented. The mathematical model of the system was proposed and numerical studies by the character line method were carried out.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in d...This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.展开更多
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th...Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.展开更多
An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy...An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy inertia-based power support strategy.The definition and modelling of gas inertia are given first to demonstrate its ability to mitigate power fluctuations.Since partial utilization of gas inertia can influence overall gas network parameters,the gas network is modelled with an analysis of network dynamic changes.A multi-energy inertia-based power support model and strategy are then proposed for fully using gas-thermal inertia resources in integrated energy systems.The influence of gas network constraints on strategy,economy and power outputs is analyzed.Special circumstances where the gas network can be simplified are introduced.This improves the response speed and application value.The feasibility and effectiveness of the proposed strategy are assessed using a real scenario.展开更多
The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to...The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.展开更多
To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal v...To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal voltage regulation can be achieved in a DCMG simultaneously.The proposed control displays good plug-and-play features using only local measurements.For quantitative analysis and effective design of the critical parameter of unified control,two indices,equivalent power supporting time and inertia contributed by the unified controlled SC system,are introduced firstly.Then,with a simple but effective reduced-order model of a DCMG,analytical solutions are obtained for the two indices.In addition,a systematic design method is presented for the proposed unified control.Finally,to verify the proposed unified control,a switching model is developed for a typical DCMG in PSCAD/EMTDC,and theoretical analyses are conducted for different operating conditions.展开更多
This paper presents a multi-HVDC emergency coordinated modulating strategy to enhance the transient stability of hybrid AC/DC power systems.First,the main factors that affect the unbalanced energy distribution during ...This paper presents a multi-HVDC emergency coordinated modulating strategy to enhance the transient stability of hybrid AC/DC power systems.First,the main factors that affect the unbalanced energy distribution during a fault are analyzed,and the dominant generators are determined online.Next,considering the influence on both generators in the sending and receiving ends,the assessment index that evaluates the effects of DC power support is established.On the basis of this,a dynamic DC power support strategy is put forward,and the DC support sequence table is promptly updated by the changing dominant generators.The AC/DC hybrid power system with multi-DC lines is built and used as a test system.The simulation results of different scenarios demonstrate that the proposed method could follow the dominant generator dynamically and adjust the DC participating in modulation to enhance the transient stability effectively and quickly.展开更多
基金Project 104030 supported by the Ministry of Education of the People’s Republic of China
文摘Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal face and, on this basis, established an automatic control model of powered supports for the coal plough face. We introduced the working principle of the powered support control system of the plough at the mining face. We established three advanced characteristics of this control system: response speed, reliability and easy maintenance of the system. As well, we briefly introduced, the principal function of primary and subordinate controllers and the realization of the communication system by a Single Bus. Ten controllers were constructed and tested in our laboratorium. The results show that the control model is practical and meets actual conditions. It provides a theoretical basis for designing a comouter control system for a oowered support system of a plough at a mining face.
文摘This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.
文摘Taking the chock shield supports as the object of study, methods formeasuring and calculating the external load of powered supports were discussed. Selecting the angleparameters as variables, the simple formulae of interactive computation with respect to the workangles of a powered support were deduced and verified by an example. Furthermore, the formulaedetermining the magnitude, direction and action point of the external load were put forward. Theinvestigation results have provided a sound basis for the software design of the intelligentinstrument for load measuring of powered supports.
文摘Fluid and solid interaction analysis of hydraulic support under the coming pressure of roof rocks was presented. The mathematical model of the system was proposed and numerical studies by the character line method were carried out.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
基金supported in part by National Natural Science Foundation of China(No.52007123).
文摘This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.
基金provided by the National Natural Science Foundation of China(No.51234005)National Basic Research Program of China under Grant(No.2010CB226802)Fundamental Research Funds for the Central Universities(No.2010QZ06)
文摘Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.
基金supported by National Key R&D Program of China(No.2019YFE0118000).
文摘An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy inertia-based power support strategy.The definition and modelling of gas inertia are given first to demonstrate its ability to mitigate power fluctuations.Since partial utilization of gas inertia can influence overall gas network parameters,the gas network is modelled with an analysis of network dynamic changes.A multi-energy inertia-based power support model and strategy are then proposed for fully using gas-thermal inertia resources in integrated energy systems.The influence of gas network constraints on strategy,economy and power outputs is analyzed.Special circumstances where the gas network can be simplified are introduced.This improves the response speed and application value.The feasibility and effectiveness of the proposed strategy are assessed using a real scenario.
基金supported by the National Natural Science Foundation of China(No.52077125)the Science and Technology Program of the State Grid Shandong Electric Power Company(No.2020A-126)。
文摘The growing number of renewable energy replacing conventional generators results in a loss of the reserve for frequency control in power systems,while many industrial power grids often have excess energy supply due to abundant wind and solar energy resources.This paper proposes a secondary frequency control(SFC)strategy that allows industrial power grids to provide emergency high-voltage direct current(HVDC)power support(EDCPS)for emergency to a system requiring power support through a voltage source converter(VSC)HVDC link.An architecture including multiple model predictive control(MPC)controllers with periodic communication is designed to simultaneously obtain optimized EDCPS capacity and minimize adverse effects on the providing power support(PPS)system.Moreover,a model of a virtual power plant(VPP)containing aluminum smelter loads(ASLs)and a high penetration of wind power is established for the PPS system.The flexibility and controllability of the VPP are improved by the demand response of the ASLs.The uncertainty associated with wind power is considered by chance constraints.The effectiveness of the proposed strategy is verified by simulation results using the data of an actual industrial power grid in Inner Mongolia,China.The DC voltage of the VSCs and the DC in the potlines of the ASLs are also investigated in the simulation.
基金supported in part by the National Nature Science Foundation(No.51977142)National Key R&D Program of China(No.2020YFB1506803)Tianjin Natural Science Foundation(No.20JCQNJC00350)。
文摘To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal voltage regulation can be achieved in a DCMG simultaneously.The proposed control displays good plug-and-play features using only local measurements.For quantitative analysis and effective design of the critical parameter of unified control,two indices,equivalent power supporting time and inertia contributed by the unified controlled SC system,are introduced firstly.Then,with a simple but effective reduced-order model of a DCMG,analytical solutions are obtained for the two indices.In addition,a systematic design method is presented for the proposed unified control.Finally,to verify the proposed unified control,a switching model is developed for a typical DCMG in PSCAD/EMTDC,and theoretical analyses are conducted for different operating conditions.
基金This work was supported in part by the National Natural Science Foundation of China(51637005)the Science and Technology Project of SGCC(SGBJDK00KJJS1900088).
文摘This paper presents a multi-HVDC emergency coordinated modulating strategy to enhance the transient stability of hybrid AC/DC power systems.First,the main factors that affect the unbalanced energy distribution during a fault are analyzed,and the dominant generators are determined online.Next,considering the influence on both generators in the sending and receiving ends,the assessment index that evaluates the effects of DC power support is established.On the basis of this,a dynamic DC power support strategy is put forward,and the DC support sequence table is promptly updated by the changing dominant generators.The AC/DC hybrid power system with multi-DC lines is built and used as a test system.The simulation results of different scenarios demonstrate that the proposed method could follow the dominant generator dynamically and adjust the DC participating in modulation to enhance the transient stability effectively and quickly.