The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
This work refers to the characterization of the hydrochemistry of the southern part of the Eastern Desert in Egypt, on the basis of physico-chemical properties of groundwater occurring in the fractured Precambrian roc...This work refers to the characterization of the hydrochemistry of the southern part of the Eastern Desert in Egypt, on the basis of physico-chemical properties of groundwater occurring in the fractured Precambrian rocks inland and in sedimentary formations on the coastline of the Red Sea. Thirty-five groundwater samples have been collected from the study area for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Several methods were used to interpret the hydrochemical data, i.e. graphical methods, principal components analysis, ions exchanges indices and saturation indices of various minerals. The results show that the major ionic relationships are Na<sup>+</sup> > Ca<sup>2+</sup> > Mg<sup>2+</sup> and Cl<sup>-</sup> > > HCO<sup>3-</sup> and that groundwater chemical characteristics are controlled by natural geochemical processes but also, to a lesser extent, by anthropogenic activities. Natural minerals dissolution, ion exchanges and evaporation play a prominent role in the ion enrichment of groundwater. A comparison of groundwater quality in relation to WHO water quality standards proved that most of the water samples are not totally suitable for drinking water purpose.展开更多
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
文摘This work refers to the characterization of the hydrochemistry of the southern part of the Eastern Desert in Egypt, on the basis of physico-chemical properties of groundwater occurring in the fractured Precambrian rocks inland and in sedimentary formations on the coastline of the Red Sea. Thirty-five groundwater samples have been collected from the study area for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Several methods were used to interpret the hydrochemical data, i.e. graphical methods, principal components analysis, ions exchanges indices and saturation indices of various minerals. The results show that the major ionic relationships are Na<sup>+</sup> > Ca<sup>2+</sup> > Mg<sup>2+</sup> and Cl<sup>-</sup> > > HCO<sup>3-</sup> and that groundwater chemical characteristics are controlled by natural geochemical processes but also, to a lesser extent, by anthropogenic activities. Natural minerals dissolution, ion exchanges and evaporation play a prominent role in the ion enrichment of groundwater. A comparison of groundwater quality in relation to WHO water quality standards proved that most of the water samples are not totally suitable for drinking water purpose.