Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ...Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.展开更多
The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS...The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS region were modestly dated while the extensive basement remains roughly postulated by limited geophysical data.This study presents a systematic analysis including U-Pb geochronology,elemental geochemistry and petrographic identification on granite and meta-clastic borehole samples from several key areas.Constrained from gravity-magnetic joint inversion,this interpretation will be of great significance revealing the tectono-magmatic evolution along the southeastern margin of the Eurasian Plate.Beneath the thick Cenozoic sediments,the northern SCS is composed of a uniform Mesozoic basement while the Precambrian rocks are only constricted along the Red River Fault Zone.Further eastern part of the northern SCS below the Cenozoic succession was widely intruded by granites with Jurassic-to-early Cretaceous ages.Further western part,on the other hand,is represented by meta-sedimentary rocks with relatively sporadic granite complexes.To be noted,the western areas derived higher-degree and wider metamorphic zones,which is in contrast with the lowerdegree and narrower metamorphic belt developed in the eastern region.Drastic collisions between the Indochina Block and South China continent took place since at least late Triassic,resulting in large-scale suturing and deformation zones.At the westernmost part of the northern SCS,the intracontinental amalgamation with closure of the Meso-Tethys has caused fairly stronger and broader metamorphism.One metamorphic biotite granite is located on the suturing belt and yields a Precambrian U-Pb age.It likely represents the relict from the ancient Gondwana supercontinent or its fringes.Arc-continental collision between the Paleo-Pacific and the southeast China Block,on the other hand,results in a relatively narrow NE–SW trending metamorphic belt during the late Mesozoic.Within the overall geological setting,the Cenozoic SCS oceanic basin was subsequently generated from a series of rifting and faulting processes along the collisional-accretionary continental margin.展开更多
A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies ar...A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.展开更多
The Upper Devonian Buchan Formation in the Central North Sea is a typical terrestrial deposit and predominantly comprises fine to medium-grained sandstones with occasional conglomerates and mudstones. The Buchan Forma...The Upper Devonian Buchan Formation in the Central North Sea is a typical terrestrial deposit and predominantly comprises fine to medium-grained sandstones with occasional conglomerates and mudstones. The Buchan Formation has been previously described as being made up mostly of braided fluvial sandstones;however, this study confirms the presence and significance of aeolian sandstones within this fluvial-dominated sequence. Facies architecture is investigated through analogue outcrop study, well log curves and numerical facies modelling, and the results show contrasting differences between fluvial and aeolian facies. The fluvial facies is composed of multiple superimposed and sand-dominated fining-upward cycles in the vertical direction, and laterally an individual cycle has a large width/thickness ratio but is smaller than the field scale. However, the high channel deposition proportion (CDP, average value = 72%) in fluvial-dominated intervals means that it is likely all the sand bodies are interconnected. Aeolian facies comprise superimposed dune and interdune depositions and can be laterally correlated over considerable distances (over 1 km). Although the aeolian sandstones are volumetrically minor (approx. 30%) within the whole Buchan Formation, they have very high porosity and permeability (14.1% - 28%, 27 - 5290 mD) and therefore are excellent potential reservoirs. The fluvial sandstones are significantly cemented by quartz overgrowth and dolomite and by comparison with the aeolian sandstones are poor reservoirs. Aeolian sandstones can be differentiated from fluvial sandstones using several features: pin-stripe lamentation, good sorting, high visible porosity, friable nature and lack of muddy or conglomeratic contents;these characteristics allow aeolian sandstones can be tentatively recognized by low gamma ray values, high sonic transit time and low density in uncored wells. The thin, laterally correlatable and permeable aeolian sandstones within the Buchan Formation are effective reservoirs and could form important exploration targets when the Devonian is targeted elsewhere in the North Sea.展开更多
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a...The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic-Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.展开更多
Grain size analysis, X ray diffraction analysis and biostratigraphy analysis of the structure, composition and formation conditions of the neritic silty clay facies sediments extensively distributed in the central par...Grain size analysis, X ray diffraction analysis and biostratigraphy analysis of the structure, composition and formation conditions of the neritic silty clay facies sediments extensively distributed in the central part of the South Yellow Sea showed that the sediments were composed of more than 70% clay, less than 30% silt, had very little or no sand, and were characterized by homogenous texture, soapy feeling, high plasticity, light green gray color and elliptical distribution being about 3 m thick in the center, being thinner towards the margin and finally thinning out. These shelf cyclonic eddy environment sediments formed a sedimentary facies different from that of the sediments in the neighbouring area and revealed the particular sediment dynamic pattern in the environment.展开更多
The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attribut...The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.展开更多
On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition feat...On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition features in the coral reef core and the corresponding stratigraphic depositional facies change as well as stratigraphic gap of erosion, analyses the cause of the sound velocity transition, expounds the concrete process of the sea level change resulting in the stratigraphic gap of erosion and facies change in the coral reef and explains the relations between the vertical sound velocity transition in the coral reef core and the corresponding stratigraphic paleoclimate and the sea level change. This study is of important practical value and theoretical significance to the island and reef engineering construction and the acoustic logging for oil exploration in the reef limestone area as well as the paleoceanographic study of the marginal sea in the western Pacific Ocean.展开更多
The Lower Jurassic is subdivided in ascending order into the Wulong, Kangdui and Yongjia Formations on the north slope of Mount Qomolangma, with a total thickness of 1362 m. They are thought to have been deposited res...The Lower Jurassic is subdivided in ascending order into the Wulong, Kangdui and Yongjia Formations on the north slope of Mount Qomolangma, with a total thickness of 1362 m. They are thought to have been deposited respectively in the environments of the carbonate ramp fault-bounded basins and carbonate platform, with six sedimentary facies and six sub-facies. During the Early Jurassic, the Qomolangma area experienced strong faulting and subsidence, and was of a matured rift basin. The Lower Jurassic consists of eleven 3rd-order sequences, which can be grouped into three 2nd-order sequences and form a large transgressive-regressive cycle. The 3rd-order sequences and the corresponding sea-level changes recognized in the area can be correlated quite well with those set up in the western Tethys, and may have been caused by the eustatic fluctuations, while the 2nd-order sequences seem to be more closely related to the basement subsidence and the variation in sedimentary influx, indicating the evolution of the eastern Neotethys and the movement of the plates on its two sides.展开更多
对杭州湾北岸3处现代潮滩沉积物进行高精度粒度分析,查找研究区潮滩不同微相的粒度特征和差异,提取基于粒度分析的潮滩微相识别敏感指标,并将其应用到该区域的全新世钻孔潮滩沉积物中,识别钻孔潮滩沉积微相,据此建立研究区全新世早期的...对杭州湾北岸3处现代潮滩沉积物进行高精度粒度分析,查找研究区潮滩不同微相的粒度特征和差异,提取基于粒度分析的潮滩微相识别敏感指标,并将其应用到该区域的全新世钻孔潮滩沉积物中,识别钻孔潮滩沉积微相,据此建立研究区全新世早期的海平面曲线。研究表明:杭州湾北岸现代高潮滩盐沼沉积物粘土含量明显高于高潮滩下部和中潮滩,而砂含量与之相反;高潮滩盐沼平均粒径等粒度参数明显小于中、高潮滩的粒度参数;盐沼沉积物粒度频率曲线峰态宽缓,明显区别于高潮滩下部和中潮滩。上述现代潮滩微相粒度敏感指标可成功应用到钻孔潮滩沉积微相划分中,并建立了该区域全新世早期海平面曲线。曲线显示,9700~8700 cal a BP期间海平面上升约11.6 m,海平面上升速率可达1.2 cm/a。现代潮滩不同位置沉积物粒度参数的规律性差异可作为潮滩微相识别的有效指标,为古潮滩沉积微相识别和古海平面重建提供参考依据。展开更多
The basement of the South China Sea(SCS)and adjacent areas can be divided into six divisions(regions)-Paleozoic Erathem graben-faulted basement division in Beibu Gulf,Paleozoic Erathem strike-slip pull-apart in Yi...The basement of the South China Sea(SCS)and adjacent areas can be divided into six divisions(regions)-Paleozoic Erathem graben-faulted basement division in Beibu Gulf,Paleozoic Erathem strike-slip pull-apart in Yinggehai waters,Paleozoic Erathem faulted-depression in eastern Hainan,Paleozoic Erathem rifted in northern Xisha(Paracel),Paleozoic Erathem strike-slip extending in southern Xisha,and Paleozoic-Mesozoic Erathem extending in Nansha Islands(Spratly)waters.The Pre-Cenozoic basement in the SCS and Yunkai continental area are coeval within the Tethyan tectonic domain in the Pre-Cenozoic Period.They are formed on the background of the Paleo-Tethyan tectonic domain,and are important components of the Eastern Tethyan multi-island-ocean system.Three branches of the Eastern Paleo-Tethys tectonic domain,North Yunkai,North Hainan,and South Hainan sea basins,have evolved into the North Yunkai,North Hainan,and South Hainan suture zones, respectively.This shows a distinctive feature of localization for the Pre-Cenozoic basement.The Qiongnan(i.e.South Hainan)Suture Zone on the northern margin of the South China Sea can be considered the vestige of the principal ocean basin of Paleo-Tethys,and connected with the suture zone of the Longmucuo-Shuanghu belt-Bitu belt-Changning-Menglian-Bentong-Raub belt,the south extension of Bitu-Changning-Menglian-Ching Mai belt-Chanthaburi-Raub-Bentong belt on the west of South China Sea,and with the Lianhua-Taidong suture zone(a fault along the east side of Longitudinal Valley in Taiwan)-Hida LP/HT(low pressure-high temperature)metamorphic belt-Hida -marginal HP/LT metamorphic belt in southwestern Honshu of Japan,on the east of the South China Sea.The Qiongbei(North Hainan)suture zone may eastwards extended along the Wangwu-Wenjiao fault zone,and connects with the Lufeng-Dapu-Zhenghe-Shangyu(Lianhuashan)deep fault zone through the Pearl River Mouth Basin.The Meso-Tethys developed on the south of the South China Sea.The Nansha Trough may be considered the vestige of the northern shelf of the Meso-Tethys. The oceanic crust of the Meso-Tethys has southwards subducted along the subduction-collision-thrust southern margin of the Nansha Trough with a subduction-pole opposite to those of the Yarlung Zangbo-Mytkyina-Bago zone on the west of the South China Sea,and the Meso-Tethyan(e.g.Northern Chichibu Ocean of the Meso-Tethys)suture zone"Butsozo tectonic line"in the outer belt of the Jurassic-Early Cretaceous terrene group in southwest Japan,on the east of the South China Sea.展开更多
This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ...This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.展开更多
By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and contro...By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.展开更多
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mu...Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.展开更多
基金supported by the National Natural Science Foundation of China(42272162)the Natural Science Foundation of Guangdong Province(2021A1515011381 and 2021A1515011635)the Science Project of the CNOOC(KJZH-2021-0003-00).
文摘Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and 41874076the National Science and Technology Major Project under contract Nos 2016ZX05026004-002 and 2017ZX05026005-005the Fund of China Association for Science and Technology under contract No.2018CASRQNJL18
文摘The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS region were modestly dated while the extensive basement remains roughly postulated by limited geophysical data.This study presents a systematic analysis including U-Pb geochronology,elemental geochemistry and petrographic identification on granite and meta-clastic borehole samples from several key areas.Constrained from gravity-magnetic joint inversion,this interpretation will be of great significance revealing the tectono-magmatic evolution along the southeastern margin of the Eurasian Plate.Beneath the thick Cenozoic sediments,the northern SCS is composed of a uniform Mesozoic basement while the Precambrian rocks are only constricted along the Red River Fault Zone.Further eastern part of the northern SCS below the Cenozoic succession was widely intruded by granites with Jurassic-to-early Cretaceous ages.Further western part,on the other hand,is represented by meta-sedimentary rocks with relatively sporadic granite complexes.To be noted,the western areas derived higher-degree and wider metamorphic zones,which is in contrast with the lowerdegree and narrower metamorphic belt developed in the eastern region.Drastic collisions between the Indochina Block and South China continent took place since at least late Triassic,resulting in large-scale suturing and deformation zones.At the westernmost part of the northern SCS,the intracontinental amalgamation with closure of the Meso-Tethys has caused fairly stronger and broader metamorphism.One metamorphic biotite granite is located on the suturing belt and yields a Precambrian U-Pb age.It likely represents the relict from the ancient Gondwana supercontinent or its fringes.Arc-continental collision between the Paleo-Pacific and the southeast China Block,on the other hand,results in a relatively narrow NE–SW trending metamorphic belt during the late Mesozoic.Within the overall geological setting,the Cenozoic SCS oceanic basin was subsequently generated from a series of rifting and faulting processes along the collisional-accretionary continental margin.
基金supported by the National Natural Science Foundation of China(41472304)the MOST(2012CB822002)+1 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-004-001)the Natural Science Foundation of Jilin Province(20170101001JC)
文摘A gas field consisting of volcanic reservoir rocks was discovered in the block-T units of the Xihu Sag,East China Sea Basin.The lithology of the volcanic rocks is dominated by tuff and reworked tuff.The lithofacies are dominated by base surge deposits of explosive facies.As the architecture model of volcanic facies is still uncertain,it has restricted the exploration and development of mineral resources in this area.Using core and cuttings data,the lithology,lithofacies,geochemistry as well as grain size characteristics of volcanic rocks were analyzed.Based on these analyses,the volcanic rocks in the well section are divided into three eruptive stages.The transport direction of each volcanic eruption is analyzed using crystal fragment size analysis.The facies architecture of the block-T units was established based on the reconstruction results of paleo-geomorphology.The results show that the drilling reveals proximal facies(PF)and distal facies(DF)of the volcanic edifices.However,the crater-near crater facies(CNCF)are not revealed.Compared with the reservoirs of the Songliao Basin,it is shown that the volcanic rocks in the Xihu Sag have good exploration potential;a favorable target area is the CNCF near the contemporaneous fault.
文摘The Upper Devonian Buchan Formation in the Central North Sea is a typical terrestrial deposit and predominantly comprises fine to medium-grained sandstones with occasional conglomerates and mudstones. The Buchan Formation has been previously described as being made up mostly of braided fluvial sandstones;however, this study confirms the presence and significance of aeolian sandstones within this fluvial-dominated sequence. Facies architecture is investigated through analogue outcrop study, well log curves and numerical facies modelling, and the results show contrasting differences between fluvial and aeolian facies. The fluvial facies is composed of multiple superimposed and sand-dominated fining-upward cycles in the vertical direction, and laterally an individual cycle has a large width/thickness ratio but is smaller than the field scale. However, the high channel deposition proportion (CDP, average value = 72%) in fluvial-dominated intervals means that it is likely all the sand bodies are interconnected. Aeolian facies comprise superimposed dune and interdune depositions and can be laterally correlated over considerable distances (over 1 km). Although the aeolian sandstones are volumetrically minor (approx. 30%) within the whole Buchan Formation, they have very high porosity and permeability (14.1% - 28%, 27 - 5290 mD) and therefore are excellent potential reservoirs. The fluvial sandstones are significantly cemented by quartz overgrowth and dolomite and by comparison with the aeolian sandstones are poor reservoirs. Aeolian sandstones can be differentiated from fluvial sandstones using several features: pin-stripe lamentation, good sorting, high visible porosity, friable nature and lack of muddy or conglomeratic contents;these characteristics allow aeolian sandstones can be tentatively recognized by low gamma ray values, high sonic transit time and low density in uncored wells. The thin, laterally correlatable and permeable aeolian sandstones within the Buchan Formation are effective reservoirs and could form important exploration targets when the Devonian is targeted elsewhere in the North Sea.
文摘The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic-Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.
文摘Grain size analysis, X ray diffraction analysis and biostratigraphy analysis of the structure, composition and formation conditions of the neritic silty clay facies sediments extensively distributed in the central part of the South Yellow Sea showed that the sediments were composed of more than 70% clay, less than 30% silt, had very little or no sand, and were characterized by homogenous texture, soapy feeling, high plasticity, light green gray color and elliptical distribution being about 3 m thick in the center, being thinner towards the margin and finally thinning out. These shelf cyclonic eddy environment sediments formed a sedimentary facies different from that of the sediments in the neighbouring area and revealed the particular sediment dynamic pattern in the environment.
基金Supported by the China National Science and Technology Major Project(2016ZX05027-004)CNOOC(China)Science and Technology Projects(CNOOC-KJ 135,ZDXM 39 SH03).
文摘The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.
基金This project was financially supported by Open Laboratory of Marginal Sea Geology and Paleoenvironment, South China Sea Institute of Oceanology, Chinese Academy of sciences, (No. 6).
文摘On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition features in the coral reef core and the corresponding stratigraphic depositional facies change as well as stratigraphic gap of erosion, analyses the cause of the sound velocity transition, expounds the concrete process of the sea level change resulting in the stratigraphic gap of erosion and facies change in the coral reef and explains the relations between the vertical sound velocity transition in the coral reef core and the corresponding stratigraphic paleoclimate and the sea level change. This study is of important practical value and theoretical significance to the island and reef engineering construction and the acoustic logging for oil exploration in the reef limestone area as well as the paleoceanographic study of the marginal sea in the western Pacific Ocean.
基金The research was jointly supported by the State ScienceTechnology Commission and the State Education Commission of China
文摘The Lower Jurassic is subdivided in ascending order into the Wulong, Kangdui and Yongjia Formations on the north slope of Mount Qomolangma, with a total thickness of 1362 m. They are thought to have been deposited respectively in the environments of the carbonate ramp fault-bounded basins and carbonate platform, with six sedimentary facies and six sub-facies. During the Early Jurassic, the Qomolangma area experienced strong faulting and subsidence, and was of a matured rift basin. The Lower Jurassic consists of eleven 3rd-order sequences, which can be grouped into three 2nd-order sequences and form a large transgressive-regressive cycle. The 3rd-order sequences and the corresponding sea-level changes recognized in the area can be correlated quite well with those set up in the western Tethys, and may have been caused by the eustatic fluctuations, while the 2nd-order sequences seem to be more closely related to the basement subsidence and the variation in sedimentary influx, indicating the evolution of the eastern Neotethys and the movement of the plates on its two sides.
基金国家自然科学基金项目《杭州湾北岸全新世早期(10-9 cal ka BP)高精度海平面重建及沉积环境响应》(批准号:41706098)《基于微体化石识别全新世高海面阶段长江口外水团相互作用及调控机制》(批准号:42076081)。
文摘对杭州湾北岸3处现代潮滩沉积物进行高精度粒度分析,查找研究区潮滩不同微相的粒度特征和差异,提取基于粒度分析的潮滩微相识别敏感指标,并将其应用到该区域的全新世钻孔潮滩沉积物中,识别钻孔潮滩沉积微相,据此建立研究区全新世早期的海平面曲线。研究表明:杭州湾北岸现代高潮滩盐沼沉积物粘土含量明显高于高潮滩下部和中潮滩,而砂含量与之相反;高潮滩盐沼平均粒径等粒度参数明显小于中、高潮滩的粒度参数;盐沼沉积物粒度频率曲线峰态宽缓,明显区别于高潮滩下部和中潮滩。上述现代潮滩微相粒度敏感指标可成功应用到钻孔潮滩沉积微相划分中,并建立了该区域全新世早期海平面曲线。曲线显示,9700~8700 cal a BP期间海平面上升约11.6 m,海平面上升速率可达1.2 cm/a。现代潮滩不同位置沉积物粒度参数的规律性差异可作为潮滩微相识别的有效指标,为古潮滩沉积微相识别和古海平面重建提供参考依据。
基金funded by the State Fund for Natural Science of China(No40976029)the National Basic Research Program of China("973")(2007CB411700 and 2009CB2194)+2 种基金the Major Knowledge Innovation Programs of the Chinese Academy of Sciences(kzcx2-yw- 203-01)the National Program of Sustaining Science and Technology(2006BABl 9B02)the Program of the Ministry of Land and Resources,China(GT-YQ-QQ-2008-1-02 and 2009GYXQ06)
文摘The basement of the South China Sea(SCS)and adjacent areas can be divided into six divisions(regions)-Paleozoic Erathem graben-faulted basement division in Beibu Gulf,Paleozoic Erathem strike-slip pull-apart in Yinggehai waters,Paleozoic Erathem faulted-depression in eastern Hainan,Paleozoic Erathem rifted in northern Xisha(Paracel),Paleozoic Erathem strike-slip extending in southern Xisha,and Paleozoic-Mesozoic Erathem extending in Nansha Islands(Spratly)waters.The Pre-Cenozoic basement in the SCS and Yunkai continental area are coeval within the Tethyan tectonic domain in the Pre-Cenozoic Period.They are formed on the background of the Paleo-Tethyan tectonic domain,and are important components of the Eastern Tethyan multi-island-ocean system.Three branches of the Eastern Paleo-Tethys tectonic domain,North Yunkai,North Hainan,and South Hainan sea basins,have evolved into the North Yunkai,North Hainan,and South Hainan suture zones, respectively.This shows a distinctive feature of localization for the Pre-Cenozoic basement.The Qiongnan(i.e.South Hainan)Suture Zone on the northern margin of the South China Sea can be considered the vestige of the principal ocean basin of Paleo-Tethys,and connected with the suture zone of the Longmucuo-Shuanghu belt-Bitu belt-Changning-Menglian-Bentong-Raub belt,the south extension of Bitu-Changning-Menglian-Ching Mai belt-Chanthaburi-Raub-Bentong belt on the west of South China Sea,and with the Lianhua-Taidong suture zone(a fault along the east side of Longitudinal Valley in Taiwan)-Hida LP/HT(low pressure-high temperature)metamorphic belt-Hida -marginal HP/LT metamorphic belt in southwestern Honshu of Japan,on the east of the South China Sea.The Qiongbei(North Hainan)suture zone may eastwards extended along the Wangwu-Wenjiao fault zone,and connects with the Lufeng-Dapu-Zhenghe-Shangyu(Lianhuashan)deep fault zone through the Pearl River Mouth Basin.The Meso-Tethys developed on the south of the South China Sea.The Nansha Trough may be considered the vestige of the northern shelf of the Meso-Tethys. The oceanic crust of the Meso-Tethys has southwards subducted along the subduction-collision-thrust southern margin of the Nansha Trough with a subduction-pole opposite to those of the Yarlung Zangbo-Mytkyina-Bago zone on the west of the South China Sea,and the Meso-Tethyan(e.g.Northern Chichibu Ocean of the Meso-Tethys)suture zone"Butsozo tectonic line"in the outer belt of the Jurassic-Early Cretaceous terrene group in southwest Japan,on the east of the South China Sea.
基金National Natural Science Foundation of China under Grant Nos.51978334 and 51978335。
文摘This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.
基金Supported by the China National Science and Technology Major Project(2016ZX05027-002-006).
文摘By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.
基金supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963)the Natural Science Foundation of Shandong Province (No. ZR 2017BD014)+1 种基金the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042)the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023)
文摘Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.