The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching eng...Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. Ho...In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.展开更多
The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1...The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.展开更多
High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice co...High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.展开更多
Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morp...Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.展开更多
BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations ...BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanica...A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or ve...The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.展开更多
Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the e...Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of ...Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.展开更多
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金supported by the National Key Technology R&D Program of China under Grant No. 2015BAK34B00the National Key Research and Development Program of China under Grant No. 2016YFB1000102
文摘Regular expression matching is playing an important role in deep inspection. The rapid development of SDN and NFV makes the network more dynamic, bringing serious challenges to traditional deep inspection matching engines. However, state-of-theart matching methods often require a significant amount of pre-processing time and hence are not suitable for this fast updating scenario. In this paper, a novel matching engine called BFA is proposed to achieve high-speed regular expression matching with fast pre-processing. Experiments demonstrate that BFA obtains 5 to 20 times more update abilities compared to existing regular expression matching methods, and scales well on multi-core platforms.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金supported by the National Natural Science Foundation of China(60902045)the National High-Tech Research and Developmeent Program of China(863 Program)(2011AA01A105)
文摘In order to meet the demands for high transmission rates and high service quality in broadband wireless communication systems, orthogonal frequency division multiplexing (OFDM) has been adopted in some standards. However, the inter-block interference (IBI) and inter-carrier interference (ICI) in an OFDM system affect the performance. To mitigate IBI and ICI, some pre-processing approaches have been proposed based on full channel state information (CSI), which improved the system performance. A pre-processing filter based on partial CSI at the transmitter is designed and investigated. The filter coefficient is given by the optimization processing, the symbol error rate (SER) is tested, and the computation complexity of the proposed scheme is analyzed. Computer simulation results show that the proposed pre-processing filter can effectively mitigate IBI and ICI and the performance can be improved. Compared with pre-processing approaches at the transmitter based on full CSI, the proposed scheme has high spectral efficiency, limited CSI feedback and low computation complexity.
文摘The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.
基金supported by the National Natural Science Foundation of China(Grant No.41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2017)CAS Key Technology Talent Program and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(2017490711)
文摘High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.
文摘Mathematical morphology is widely applicated in digital image procesing.Vari- ary morphology construction and algorithm being developed are used in deferent digital image processing.The basic idea of mathematical morphology is to use construction ele- ment measure image morphology for solving understand problem.The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter.It gave the theo- ries of MMCNN dynamic extent and stable state.It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.
文摘BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
基金National Natural Science Foundation of China(No.61903291)Industrialization Project of Shaanxi Provincial Department of Education(No.18JC018)。
文摘A signal pre-processing method based on optimal variational mode decomposition(OVMD)is proposed to improve the efficiency and accuracy of local data filtering and analysis of edge nodes in distributed electromechanical systems.Firstly,the singular points of original signals are eliminated effectively by using the first-order difference method.Then the OVMD method is applied for signal modal decomposition.Furthermore,correlation analysis is conducted to determine the degree of correlation between each mode and the original signal,so as to accurately separate the real operating signal from noise signal.On the basis of theoretical analysis and simulation,an edge node pre-processing system for distributed electromechanical system is designed.Finally,by virtue of the signal-to-noise ratio(SNR)and root-mean-square error(RMSE)indicators,the signal pre-processing effect is evaluated.The experimental results show that the OVMD-based edge node pre-processing system can extract signals with different characteristics and improve the SNR of reconstructed signals.Due to its high fidelity and reliability,this system can also provide data quality assurance for subsequent system health monitoring and fault diagnosis.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
文摘The solution of linear equation group can be applied to the oil exploration, the structure vibration analysis, the computational fluid dynamics, and other fields. When we make the in-depth analysis of some large or very large complicated structures, we must use the parallel algorithm with the aid of high-performance computers to solve complex problems. This paper introduces the implementation process having the parallel with sparse linear equations from the perspective of sparse linear equation group.
文摘Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
基金supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+3 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211)Innovative Research Project for Graduate Students in Hainan Province(Grant Nos.Qhys2023-96,Qhys2023-95).
文摘Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.