期刊文献+
共找到631篇文章
< 1 2 32 >
每页显示 20 50 100
A 10-yr Rainfall and Cloud-to-Ground Lightning Climatology over Coastal and Inland Regions of Guangdong,China during the Pre-Summer Rainy Season
1
作者 Yuqing RUAN Rudi XIA +3 位作者 Xinghua BAO Dong ZHENG Yan SHEN Jinfang YIN 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期469-488,共20页
A comparative analysis of the spatiotemporal distribution characteristics of rainfall and lightning in coastal and inland areas of Guangdong Province of China during the pre-summer rainy season(PSRS)from 2008 to 2017 ... A comparative analysis of the spatiotemporal distribution characteristics of rainfall and lightning in coastal and inland areas of Guangdong Province of China during the pre-summer rainy season(PSRS)from 2008 to 2017 reveals distinct patterns.In the inland target region(ITR),rainfall is concentrated in the central and eastern mountainous areas.It exhibits a bimodal diurnal variation,with peaks in the afternoon and morning.The afternoon peak becomes more pronounced during the post-monsoon-onset period because of the increased rainfall frequency.Similarly,in the coastal target region(CTR),rainfall concentrates around mountainous peripheries.However,CTR’s rainfall is weaker than ITR’s during the pre-monsoon-onset period,primarily associated with the lower-level moisture outflow in CTR,but it strengthens significantly during the post-monsoon-onset period owing to enhanced moisture inflow.CTR’s diurnal rainfall variation transitions from bimodal to a single broad peak during the post-monsoon-onset period,influenced by changes in both rainfall frequency and intensity.In contrast to rainfall,the spatiotemporal distribution of lightning centers remains relatively stable during the PSRS.The strongest center is located over ITR’s plains west of the rainfall center,with a secondary center in the western plains of CTR.Lightning activity significantly increases during the post-monsoon-onset period,particularly in ITR,primarily because of the increased lightning hours.The diurnal lightning flash density and lightning hours show a single afternoon peak in the two target regions,and the timing of the peak in ITR is approximately two hours later than in CTR.Composite circulation analysis indicates that during early morning,the lower atmosphere is nearly neutral in stratification.The advected warm,moist,unstable airflow,combined with topography,favors convection initiation.In the afternoon,solar radiation increases thermal instability,further enhancing the convection frequency and intensity.Improved moisture and thermal conditions contribute to an increase in rainfall and lightning during the post-monsoon-onset period.Moreover,the occurrence of lightning is found to be closely linked to the most unstable convective available potential energy,low-level vertical wind shear,and updraft intensity. 展开更多
关键词 RAINFALL lightning spatiotemporal distribution diurnal variation pre-summer rainy season
原文传递
Mesoscale Observational Analysis of Lifting Mechanism of a Warm-Sector Convective System Producing the Maximal Daily Precipitation in China Mainland during Pre-Summer Rainy Season of 2015 被引量:52
2
作者 吴梦雯 罗亚丽 《Journal of Meteorological Research》 SCIE CSCD 2016年第5期719-736,共18页
A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolutio... A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective ceils are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θe) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θe air. The cold outflow is weak (wind speed ≤ 5 m s-1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3℃ and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-kin length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h. 展开更多
关键词 pre-summer rainy season of South China coastal warm-sector heavy rainfall mesoscale con- vective system mesoscale boundary convection-generated cold outflow
原文传递
Variations in the starting date of the pre-summer rainy season in South China, 1736-2010 被引量:1
3
作者 DING Lingling GE Quansheng +1 位作者 ZHENG Jingyun HAO Zhixin 《Journal of Geographical Sciences》 SCIE CSCD 2014年第5期845-857,共13页
The starting dates of the pre-summer rainy season during historical times (1736- 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen... The starting dates of the pre-summer rainy season during historical times (1736- 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2-3 years, 10 years, and 40 years were detected during the period 1736-1911, and of 2-3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953-2010 and Guangzhou during 1952-2010. The maximum difference between neighboring decades during 1736-1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively. 展开更多
关键词 South China starting date of the pre-summer rainy season reconstruction variation Yu-Xue-Fen-Cun
原文传递
Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China 被引量:11
4
作者 BAO XingHua LUO YaLi +2 位作者 SUN JiaXiang MENG ZhiYong YUE Jian 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1866-1885,共20页
This study examines the effectiveness of an ensemble Kalman filter based on the weather research and forecasting model to assimilate Doppler-radar radial-velocity observations for convection-permitting prediction of c... This study examines the effectiveness of an ensemble Kalman filter based on the weather research and forecasting model to assimilate Doppler-radar radial-velocity observations for convection-permitting prediction of convection evolution in a high-impact heavy-rainfall event over coastal areas of South China during the pre-summer rainy season. An ensemble of 40 deterministic forecast experiments(40 DADF) with data assimilation(DA) is conducted, in which the DA starts at the same time but lasts for different time spans(up to 2 h) and with different time intervals of 6, 12, 24, and 30 min. The reference experiment is conducted without DA(NODA).To show more clearly the impact of radar DA on mesoscale convective system(MCS)forecasts, two sets of 60-member ensemble experiments(NODA EF and exp37 EF) are performed using the same 60-member perturbed-ensemble initial fields but with the radar DA being conducted every 6 min in the exp37 EF experiments from 0200 to0400 BST. It is found that the DA experiments generally improve the convection prediction. The 40 DADF experiments can forecast a heavy-rain-producing MCS over land and an MCS over the ocean with high probability, despite slight displacement errors. The exp37 EF improves the probability forecast of inland and offshore MCSs more than does NODA EF. Compared with the experiments using the longer DA time intervals, assimilating the radial-velocity observations at 6-min intervals tends to produce better forecasts. The experiment with the longest DA time span and shortest time interval shows the best performance.However, a shorter DA time interval(e.g., 12 min) or a longer DA time span does not always help. The experiment with the shortest DA time interval and maximum DA window shows the best performance, as it corrects errors in the simulated convection evolution over both the inland and offshore areas. An improved representation of the initial state leads to dynamic and thermodynamic conditions that are more conducive to earlier initiation of the inland MCS and longer maintenance of the offshore MCS. 展开更多
关键词 中尺度对流系统 中国南方地区 演变预测 雷达观测 多普勒雷达 卡尔曼滤波 同化 暴雨
原文传递
Seasonal Forecasts of Precipitation during the First Rainy Season in South China Based on NUIST-CFS1.0
5
作者 Sinong LI Huiping YAN Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1895-1910,共16页
Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy ... Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy season(FRS,i.e.,April–June)over South China from 1982 to 2020 based on the global real-time Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0,previously known as SINTEX-F).The potential predictability and the practical forecast skill of NUIST-CFS1.0 for FRS precipitation remain low in general.But NUIST-CFS1.0 still performs better than the average of nine international models in terms of correlation coefficient skill in predicting the interannual precipitation anomaly and its related circulation index.NUIST-CFS1.0 captures the anomalous Philippines anticyclone,which transports moisture and heat northward to South China,favoring more precipitation in South China during the FRS.By examining the correlations between sea surface temperature(SST)and FRS precipitation and the Philippines anticyclone,we find that the model reasonably captures SST-associated precipitation and circulation anomalies,which partly explains the predictability of FRS precipitation.A dynamical downscaling model with 30-km resolution forced by the large-scale circulations of the NUIST-CFS1.0 predictions could improve forecasts of the climatological states and extreme precipitation events.Our results also reveal interesting interdecadal changes in the predictive skill for FRS precipitation in South China based on the NUIST-CFS1.0 hindcasts.These results help improve the understanding and forecasts for FRS precipitation in South China. 展开更多
关键词 seasonal forecast of precipitation first rainy season in South China global climate model prediction
下载PDF
The Influence of Local Rainy and Dry Seasons on the Diurnal Temperature Range in Nigeria
6
作者 Stanley I. Echebima Andrew A. Obafemi 《Atmospheric and Climate Sciences》 CAS 2023年第2期314-332,共19页
This study analyzed the impact of the local dry and rainy seasons on diurnal temperature range (DTR), for each major climatic zone of Nigeria namely the tropical monsoon, tropical savannah and semi-arid, using meteoro... This study analyzed the impact of the local dry and rainy seasons on diurnal temperature range (DTR), for each major climatic zone of Nigeria namely the tropical monsoon, tropical savannah and semi-arid, using meteorological data from thirteen observation stations for the period 1981 to 2021. DTR was computed from the difference of minimum temperature from maximum temperature and yearly and forty one years’ monthly averages of DTR and rainfall were computed and plotted in different graphs. The overall results from each climatic zone showed that DTR fluctuates with the seasons and there is an inverse relationship between DTR and rainfall whereby the value of DTR decreases as the rainy season approaches but increases as the rainy season departs ushering in the dry season or conversely DTR increases as the dry season approaches and decreases as the dry season departs ushering-in the rainy season. Secondly, the average yearly patterns of rainfall and DTR are roughly and oppositely shaped parabolas where the peak value of rainfall is diametrically opposite to the trough value of DTR and the least or nil volume of rainfall corresponds to the highest value of DTR. Thirdly, due to the yearly seasonal cycle of dry and rainy seasons in Nigeria coupled with the inverse relationship between DTR and Rainfall, the seasonal plot of DTR and rainfall is also cyclic in pattern with DTR cycle lagging 180 degrees with the rainfall cycle and the intersection of the two cycles represents the departure of one season and onset of another season while each half-cycle represents either the dry or rainy season. Fourthly, the dependence of DTR on any season at hand in Nigeria makes DTR season-forcing. This fourth result is underpinned by a result that showed that the 1981 and 2021 patterns of DTR and 1981 and 2021 patterns of rainfall when compared were similar, the differences were in the volume of rainfall which was due to climate change that has taken place over the four decades and which also impacted DTR since DTR varies inversely with rainfall. Finally and notwithstanding the common grounds of the results stated above, the result further showed that each climatic zone of Nigeria reacts differently to the local and global climate changes leading to the magnitude of DTR and the volume of rainfall being different across climatic zones, with rainfall volume and duration decreasing towards the arid North from the Coastal South while contrariwise DTR increases towards the arid North from the Coastal South. 展开更多
关键词 Dry season rainy season Harmattan Period Primary and Secondary Axes of a Graph
下载PDF
Pre-summer Persistent Heavy Rain over Southern China and Its Relationship with Intra-seasonal Oscillation of Tropical Atmosphere 被引量:1
7
作者 邱迪 姚素香 夏依聪 《Journal of Tropical Meteorology》 SCIE 2022年第4期445-456,共12页
Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regula... Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regularity of continuous heavy precipitation over Southern China(SC)from April to June in 1979-2020 was systematically analyzed.The interaction between specific humidity and circulation field at the background-scale,the intra-seasonal-scale and the synoptic-scale,and its influence on persistent heavy precipitation over the SC during the April-June rainy season were quantitatively diagnosed and analyzed.The results are as follows.Persistent heavy rainfall events(PHREs)over the SC during the April-June rainy season occur frequently from mid-May to mid-and late-June,exhibiting significant intra-seasonal oscillation(10-30-day)features.Vertically integrated moisture flux convergence(VIMFC)can well represent the variation of the PHREs.A multiscale quantitative diagnosis of the VIMFC shows that the pre-summer PHREs over the SC are mainly affected by the background water vapor(greater than 30 days),intraseasonal circulation disturbance(10-30-day)and background circulation(greater than 30 days),and water vapor convergences are the main factor.The SC is under the control of a warm and humid background and a strong intraseasonal cyclonic circulation,with strong convergence and ascending movements and abundant water vapor conditions during the period of the PHREs.Meanwhile,the westward inter-seasonal oscillation of tropical atmosphere keeps the precipitation system over the SC for several consecutive days,eventually leading to the occurrence,development and persistence of heavy precipitation. 展开更多
关键词 April-June rainy season over Southern China persistent heavy rainfall events(PHREs) intra-seasonal oscillation multiscale diagnosis index of the boreal summer intra-seasonal oscillation(BSISO)
下载PDF
Seasonal Transition of Summer Rainy Season over Indochina and Adjacent Monsoon Region 被引量:26
8
作者 Jun MatsumotoDepartment of Geography, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第2期108-122,共15页
The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in... The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in Indochina, India and the South China Sea is also examined using 5-day mean OLR (1975-87) and 850 hPa wind (1980-88) data. It was found that the onset of summer rainy season begins earlier in the inland region of Indochina (Thailand) in late April to early May than in the coastal region along the Bay of Bengal. This early onset of rainy season is due to pre-monsoon rain under the mid-latitude westerly wind regime. The full summer monsoon circulation begins to establish in mid-May, causing active convective activity both over the west coast of Indochina and the central South China Sea. In case of withdrawal, the earliest retreat of summer rainy season is found in the central northern part of Indochina in late September. The wind field, on the other hand, already changes to easterlies in the northern South China Sea in early September. This easterly wind system covers the eastern part of Indochina where post-monsoon rain is still active. In late October, the wind field turns to winter time situation, but post monsoon rain still continues in the southern part of the Indochina Peninsula until late November. 展开更多
关键词 seasonal transition rainy season Summer monsoon onset
下载PDF
APPLICATION EXPERIMENT OF ASSIMILATING RADAR-RETRIEVED WATER VAPOR IN SHORT-RANGE FORECAST OF RAINFALL IN THE ANNUALLY FIRST RAINY SEASON OVER SOUTH CHINA 被引量:2
9
作者 张诚忠 陈子通 +4 位作者 万齐林 林振敏 黄燕燕 戴光丰 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2016年第4期578-588,共11页
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila... A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance. 展开更多
关键词 radar-retrieved water vapor RAINFALL in annually FIRST rainy season SHORT-RANGE FORECAST data assimilation
下载PDF
SSTA SIGNAL CHARACTERISTIC ANALYSIS OVER THE INDIAN OCEAN DURING RAINY SEASON IN CHINA 被引量:2
10
作者 晏红明 严华生 谢应齐 《Journal of Tropical Meteorology》 SCIE 2001年第2期122-130,共8页
The teleconnection distribution characteristics of sea surface temperature (SST) over the India Ocean and the precipitation during rainy season in China were studied by using the methods of EOF and CCA. The results in... The teleconnection distribution characteristics of sea surface temperature (SST) over the India Ocean and the precipitation during rainy season in China were studied by using the methods of EOF and CCA. The results indicate that the change of SST field will affect the change of rain belt during rainy seasons in China, and greatly affect the precipitation in northwest and southwest China, the Yangzi and Yellow River downstream basins. Strong signal phenomena of SSTA over India Ocean were revealed that showed the anoma-lous distribution of drought and flood in China. It shows that the precipitation during rainy seasons in China may be forecast by analyzing SST distribution characteristics over the India Ocean. 展开更多
关键词 precipitation in China’s rainy season SSTA CANONICAL correlation analysis signal characteristics
下载PDF
Reconstruction of the starting time series of rainy season in Yunnan and the evolvement of summer monsoon during 1711-1982 被引量:2
11
作者 YANG Yuda MAN Zhimin ZHENG Jingyun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期212-220,共9页
According to the textual research into the historical documents dominated by archives yearly, as well as the verification with several other kinds of data, the later or earlier starting time of the rainy seasons in Yu... According to the textual research into the historical documents dominated by archives yearly, as well as the verification with several other kinds of data, the later or earlier starting time of the rainy seasons in Yunnan during 1711-1982 has been reconstructed. The analysis indicates that there are obvious fluctuations in the starting date of the rainy seasons in Yunnan in a year or years, and long fluctuation on the decadal scale. The rainy season comes earlier in the early 18th century, later in the 19th century and earlier again in the 20th century. This reflects to a certain degree the gradual change of the summer monsoon in Yunnan. There exists an obvious quasi-3 years cycle, which is related to EI-Nino's quasi-3 years cycle, and a 11.3-year cycle which is notably related to the 11-year cycle of the solar activity of starting date of the rainy seasons in Yunnan. Meanwhile, the dissertation finds that the EI-Nino is very important to the starting date of the rainy seasons in Yunnan. The starting date of the rainy seasons in Yunnan often comes later or normally in the year of EI-Nino. However, there is an obvious imperfect period in such influence, which in turn may mean that there is a certain fluctuation in the effect of ENSO on Asian summer monsoon. 展开更多
关键词 YUNNAN Qing Dynasty starting date of rainy season summer monsoon ENSO
下载PDF
INFLUENCES OF LOW-FREQUENCY MOISTURE TRANSPORTATION ON LOW FREQUENCY PRECIPITATION ANOMALIES IN THE ANNUALLY FIRST RAINY SEASON OF SOUTH CHINA IN 2010 被引量:1
12
作者 李丽平 许冠宇 +1 位作者 倪碧 柳艳菊 《Journal of Tropical Meteorology》 SCIE 2016年第S1期46-56,共11页
85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the p... 85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the precipitation of the first rain season and its relationships with moisture transport in South China,and channels of low-frequency water vapor transport and sources of low-frequency precipitation are revealed.The annually first raining season precipitation in 2010 is mainly controlled by 10-20 d and 30-60 d oscillation.The rainfall is more(interrupted) when the two low-frequency components are in the same peak(valley) phase,and the rainfall is less when they are superposed in the inverse phase.The 10-20 d low-frequency component of the moisture transport is more active than the 30-60 d.The10-20 d water vapor sources lie in the South India Ocean near 30° S,the area between Sumatra and Kalimantan Island(the southwest source),and the equatorial middle Pacific region(the southeast source),and there are corresponding southwest and southeast moisture transport channels.By using the characteristics of 10-20 d water vapor transport anomalous circulation,the corresponding low-frequency precipitation can be predicted 6 d ahead. 展开更多
关键词 LOW-FREQUENCY precipitation characteristics wavelet analysis LOW-FREQUENCY vapor sources annually annually FIRST rainy season of South China
下载PDF
Temporal Variations of the Frontal and Monsoon Storm Rainfall during the First Rainy Season in South China 被引量:11
13
作者 YUAN Fang WEI Ke +2 位作者 CHEN Wen FONG Soi Kun LEONG Ka Cheng 《Atmospheric and Oceanic Science Letters》 2010年第5期243-247,共5页
The temporal variations in storm rainfall during the first rainy season (FRS) in South China (SC) are investigated in this study. The results show that the inter-annual variations in storm rainfall during the FRS in S... The temporal variations in storm rainfall during the first rainy season (FRS) in South China (SC) are investigated in this study. The results show that the inter-annual variations in storm rainfall during the FRS in SC seem to be mainly influenced by the frequency of storm rainfall, while both frequency and intensity affect the inter-decadal variations in the total storm rainfall. Using the definitions for the beginning and ending dates of the FRS, and the onset dates of the summer monsoon in SC, the FRS is further divided into two sub-periods, i.e., the frontal and monsoon rainfall periods. The inter-annual and inter-decadal variations in storm rainfall during these two periods are investigated here. The results reveal a significant out-of-phase correlation between the frontal and monsoon storm rainfall, especially on the inter-decadal timescale, the physical mechanism for which requires further investigation. 展开更多
关键词 夏季季风 时空变化 暴雨期 中国 前汛期 年代际变化 锋面 季节
下载PDF
Interannual Variation of the Onset of Yunnan’s Rainy Season and Its Relationships with the Arctic Oscillation of the Preceding Winter 被引量:1
14
作者 Yan Chen Shichang Guo +2 位作者 Yu Liu Jianhua Ju Juzhang Ren 《Atmospheric and Climate Sciences》 2017年第2期210-222,共13页
Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timi... Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timing of the rainy sea-son by using the NCEP/NCAR reanalysis and observational precipitation data for 1961-2010. The results indicated that, on an interannual time scale, intense Asian summer monsoon and an active EU-pattern wave train circulation in its positive phase, associated with a cold cyclonic cell covering the western part of the East Asian subtropical westerly jet (EASWJ), jointly contributed to the onset of the rainy season in May. Otherwise, the onset might be suppressed. The cold cyclonic cell over East Asia likely led to the southward shift and enhancement of EASWJ as well as its secondary circulation around the jet entrance, which could provide a favorable dynamic and thermal condition for rainfalls in Yunnan as was revealed in previous studies on 10 - 30-day time scale. Further examination showed that the preceding wintertime AO played a significant role in the timing of the onset of the rainy season before the mid-1980s’ by mostly modulating the wave-train-like circulation over East Asia in May. During that time period, when the AO index of the previous winter was positive (negative), Yunnan’s rainy season tended to begin earlier (later) than normal. Correspond-ingly, the precipitation in May was also closely linked to wintertime AO. 展开更多
关键词 ONSET of Yunnan’s rainy season East Asian SUBTROPICAL WESTERLY Jet (EASWJ) Arctic Oscillation (AO) INTERANNUAL Variation
下载PDF
Comparison of Rainy Season Onset, Cessation and Duration for Ghana from RegCM4 and GMet Datasets 被引量:1
15
作者 Caleb Mensah Leonard K. Amekudzi +2 位作者 Nana Ama B. Klutse Jeffrey N. A. Aryee Kofi Asare 《Atmospheric and Climate Sciences》 2016年第2期300-309,共10页
The socio-economic sector of West African countries is rain-fed agriculture driven. Information regarding the onset, cessation and duration of the rainy season is thus, very essential. In this paper, a comparison of t... The socio-economic sector of West African countries is rain-fed agriculture driven. Information regarding the onset, cessation and duration of the rainy season is thus, very essential. In this paper, a comparison of the onset, cessation and duration of the rainy season has been carried out using simulated rainfall data from the fourth generation Regional Climate Model (RegCM4) and rain gauge measurements from Ghana Meteorological Agency (GMet), covering a period of 1998 to 2012. Similar onset and cessation dates were seen in both the simulated and guage rainfall measurements for the various agro-ecological zones, resulting in similar duration of the rainy season. The average duration of the rainy season were less than 200 days for the savannah and coastal zones whereas the duration of the rainy season were beyond 200 days for the forest and transition zones. The bias of these comparisons was less than 30 days and the root mean square error (RMSE) values were less than 15 days for all stations, except Saltpond. The Pearson’s correlation (r) typically ranged between 0.4 and 0.8. However, negative correlations were observed for Tamale in the savannah zone, and the entire coastal zone. These findings are indications that RegCM4 has the potential to clearly simulate the movement of the rain belt, and thus, could fairly determine the onset, cessation and duration of the rainy season. The findings have significant contributions to effective water resource management and food security in Ghana, as the thriving of these sectors depend on the dynamics of the rainfall seasons. 展开更多
关键词 ONSET CESSATION Duration of rainy season GMet Ghana RegCM4
下载PDF
Occurrence and Epidemic Dynamics and Control Countermeasures of Important Sugarcane Diseases in Rainy and Humid Season
16
作者 Li Wenfeng Shan Hongli +5 位作者 Huang Yingkun Zhang Rongyue Cang Xiaoyan Yin Jiong Wang Xiaoyan Luo Zhiming 《Plant Diseases and Pests》 CAS 2017年第6期35-38,共4页
The rainy and humid season from July to September is the crucial period for elongation and jointing and yield performance of sugarcane,and also a peak occurrence and damage period of many important sugarcane diseases.... The rainy and humid season from July to September is the crucial period for elongation and jointing and yield performance of sugarcane,and also a peak occurrence and damage period of many important sugarcane diseases. In order to prevent large-area outbreak of sugarcane diseases and ensure safe growth in late stage,the occurrence dynamics of important sugarcane diseases in the rainy and humid season was analyzed and discussed from the aspects of three epidemic outbreak elements of plant diseases: host plant,pathogen and environmental condition. Moreover,the corresponding control ideas and technical countermeasures were put forward according to the epidemic characteristic of sugarcane diseases and the actual sugarcane production. 展开更多
关键词 rainy and humid season SUGARCANE DISEASES OCCURRENCE dynamics Control COUNTERMEASURE Technical measures
下载PDF
Estimation of precipitation condensation latent heat in rainy season over Qinghai-Tibet Plateau
17
作者 DongLiang Li Hui Wang Miao Liu 《Research in Cold and Arid Regions》 2009年第2期99-106,共8页
The basic data for this research comprise the outgoing long-wave radiation(OLR) data observed by the United States National Oceanic and Atmospheric Administration(NOAA) series satellites from June 1974 through Decembe... The basic data for this research comprise the outgoing long-wave radiation(OLR) data observed by the United States National Oceanic and Atmospheric Administration(NOAA) series satellites from June 1974 through December 2005 over the area of 75°-105°E and 25°-40°N(totaling 91 grid zones when the horizontal resolution is 2.5° longitude by 2.5° latitude) and the monthly rainfall data recorded,from 1961 through 2005,by 93 conventional meteorological stations on the Qinghai-Tibet Plateau.Based on the research of the relation between rainfall and OLR and climate regionalization,a mathematic model was established for each region and grid zone,which is applied to estimate the monthly rainfall and then to estimate the monthly latent heat resulting from the condensation of precipitation year by year from 1961 through 2005.The results indicated that the multi-year average precipitation is 401.5 mm and the condensation latent heat is 18.55×1020 J in the eastern part of the Qinghai-Tibet Plateau;the increasing rate of condensation latent heat is 0.218×1020J/10a in the recent 45 years;that is to say,it will increase 1.2 percent in each decade.Furthermore,the total condensation latent heat and its variation rate in the Qinghai-Tibet Plateau are slightly larger than in the east to the plateau. 展开更多
关键词 Qinghai-Tibet Plateau rainy season RAINFALL OLR condensation latent heat
下载PDF
Analysis on the Precipitation Characteristics in the Rainy Season in Liupanshui City in Recent 50 Years
18
作者 ZHANG Yan-mei ZHONG Jing +2 位作者 CHEN Hai-tao HUANG Tai-lin WU Hua-hong 《Meteorological and Environmental Research》 CAS 2011年第2期24-26,共3页
[Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi,... [Objective] The research aimed to study the variation rule of precipitation in the rainy season in Liupanshui City in recent 50 years. [Method] Based on the monthly precipitation data from three observatories (Liuzhi, Panxian and Shuicheng) of Liupanshui City from May to September during 1960-2009, the interannual, interdecadal variation and mutation characteristics of precipitation in the rainy season in Liupanshui City in recent 50 years were analyzed by using the linear tendency estimation, sliding T-test and Morlet wavelet analysis method. [Result] The rainfall in the rainy season in Liupanshui City in recent 50 years presented the decline trend, and the linear tendency rate was -15.4 mm/10 a. The precipitation in the rainy season in Liupanshui City had the obvious interannual and interdecadal variation characteristics. It was the obvious rainless period in the metaphase of 1960s, and the precipitation was comparatively more in late 1960s. It was the relatively rainless period in the whole 1970s. From late 1970s to late 1980s, the precipitation in the rainy season entered into the pluvial period, and it was the period when the precipitation was the most in recent 50 years. The precipitation was relatively less from late 1980s to metaphase of 1990s. It was the pluvial period in the middle and late periods of 1990s, and it was the rainless period when entered into the 21st century. The sliding T-test showed that the precipitation mutation point in the rainy season in Liupanshui City in recent 50 years was in 2002. The wavelet analysis showed that the precipitation in the rainy season in Liupanshui City had the significant multiple time scale characteristic. In the interdecadal scale, the precipitation had the significant 16-year periodic oscillation which stably existed in 50 years. In the interannual scale, the precipitation had the quasi-8-year periodic oscillation. [Conclusion] The research provided the scientific basis for the accurate forecast of drought and flood disasters, disaster prevention and reduction in the city. 展开更多
关键词 Precipitation in the rainy season Variation characteristic MUTATION Liupanshui City China
下载PDF
Re-Discussion on East Asian Meiyu Rainy Season
19
作者 Lü Jun-Mei JU Jian-Hua TAO Shi-Yan 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期279-283,共5页
In this paper,the synoptic-climatology of Meiyu in East Asia is discussed.It is proposed that the location of the rain band of Meiyu is stable from the viewpoint of climatology,even though the active(wet)and break(dry... In this paper,the synoptic-climatology of Meiyu in East Asia is discussed.It is proposed that the location of the rain band of Meiyu is stable from the viewpoint of climatology,even though the active(wet)and break(dry)Meiyu are influenced by synoptic systems.The duration and the onset and retreat dates of Meiyu exhibit tremendous interannual variabilities,and thus,they are almost unpredictable in seasonal climate prediction.The Meiyu has been used as a synoptic concept and applied to the operational forecast for many decades by meteorological agencies in East Asian countries.As a result,the prediction of the onset and retreat dates of Meiyu has become an important operational work for meteorological services.This has also misled the public’s and scientists’attention.The northward propagation of the East Asian summer monsoon(EASM)surge associated with the intraseasonal oscillation is closely related to the active and break Meiyu.The activities and propagation of the EASM surge modulate the active/break Meiyu that cause concentrative severe precipitation processes and floods or droughts;hence,the authors suggest changing the current forecasting methodology of Meiyu.It is more meaningful from the scientific as well as application viewpoints to establish the monitoring and forecasting of the EASM surge to replace the current operational forecast of Meiyu after the seasonal progress enters the climatological Meiyu period in a year. 展开更多
关键词 东亚国家 梅雨期 东亚夏季风 季节内振荡 汛期 天气系统 气候预测 业务预报
下载PDF
RELATIONSHIP BETWEEN WEST PACIFIC SUBTROPICAL HIGH AND ENSO AND ITS INFLUENCE ON RAINFALL DISTRIBUTION OF RAINY SEASON IN FUJIAN
20
作者 蔡学湛 吴滨 温珍治 《Journal of Tropical Meteorology》 SCIE 2003年第1期57-63,共7页
Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the... Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the subtropical high indices and preceding SST in the equatorial East Pacific was the strongest among the others, and has great persistency from last autumn to spring. It is indicated that ENSO events appeared about six months earlier than the change of the subtropical high activities, and the subtropical high intensities enhanced (weakened) and western ridge point was westward (eastward) in the year of El Nino (La Nina) events. It was also observed that there were similar interdecadal oscillation and abrupt variations between Nino3 SST, subtropical high intensities and rainfall of rainy season in Fujian. Therefore, experiments were made on rainfall distribution of rainy season in Fujian. The results showed that the distribution was directly affected by the subtropical high activities, pronouncedly caused by ENSO effect. 展开更多
关键词 ENSO “厄尔尼诺”现象 西太平洋 亚热带高压 雨季 降雨分布 气候影响 相互关系 福建
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部