The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets i...The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.展开更多
The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemica...The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.展开更多
The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron micr...The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analys...The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analysis. The as-received alloy shows a low hardness value of HB 168 and a highest toughness value of 96 J. After an aging treatment at 800 ℃ for 16 h and cooled in air (standard heat-treated condition), fine γ′ phase particles precipitate within the grains and small carbide particles are located at the grain boundaries. The hardness increases to HB 304 and the impact toughness decreases to 15 J after standard heat treatment. A maximum hardness value of HB 331 is achieved for the alloy aged at 750 ℃ for 300 h. With increasing the aging time from 300 to 10000 h, a decrease of the hardness and toughness is observed along with an enhanced quantity of M23C6 particles and the coarsening of γ′ phase.展开更多
Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Com...Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.展开更多
The phase precipitation behavior and tensile properties of an as-cast Ni-based alloy,IN617B alloy,after solution heat treatment and long-term aging treatment were investigated.Ti(C,N),M6C and M23C6 are the primary pre...The phase precipitation behavior and tensile properties of an as-cast Ni-based alloy,IN617B alloy,after solution heat treatment and long-term aging treatment were investigated.Ti(C,N),M6C and M23C6 are the primary precipitates in as-cast microstructure.After solution heat treatment,most of carbides dissolve into the matrix except a few fine Ti(C,N)within grains.During long-term aging at 700°C,the phase precipitation behaviors of the alloy are characterized as follows:(1)M23C6 carbides at grain boundaries(GBs)transform from film-like shape to cellular shape and gradually coarsen due to the decrease of the surface energy and element aggregation to GBs;(2)M23C6 carbides within grains have a bar-like morphology with a preferential growth direction[110]and have a cube-on-cube coherent orientation relationship with the matrixγ;(3)γ?particles inhibit the coarsening of M23C6 within grains by constraining the diffusion of formation elements.Furthermore,the tensile strength of the alloy obviously increases,but the ductility significantly decreases after the aging for 5000 h.The alloy has a relatively stable microstructure which guarantees the excellent tensile properties during long-term aging.展开更多
Phase precipitation and mechanical properties of TC21 titanium alloy with two different initial microstructures during heat treatment were determined. Result indicated that compared with coarse microstructure alloy, f...Phase precipitation and mechanical properties of TC21 titanium alloy with two different initial microstructures during heat treatment were determined. Result indicated that compared with coarse microstructure alloy, fine microstructure alloy developed finer microstructure, more unstable <em>ω</em> and <em>α</em><sub>2</sub> precipitates with much smaller size and lower volume fraction, and obtained better mechanical properties during heat treatment.展开更多
Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(S...Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation.The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate.In alkaline media,Al–Fe SPPs exhibit more positive potentials than the substrate,thus aggravating localized galvanic corrosion as cathodic phases.Moreover,finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster,and the current density on the Al substrate gradually decreases with distance.展开更多
To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are be...To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are being studied. The interface reactions between Al_(66)Fe_9Ti_(25)matrix and SiC reinforcement were investigated. It is determined that SiC is chemically incompatible with the Al_(66)Fe_9Ti_(25)matrix, Al_2O_3 barrier coating on SiC by sol-gel process was developed to minimize the interfacial reactions. On the other hand, a new type of Al_3Ti-based alloy having a L1_2 matrix with second phase precipitation has been developed. The quaternary alloys based on Al_(66)Fe_9Ti_(25)and modified with Nb additions, consist of a L1_2 matrix and D0_(22) second phase in the annealed state ,but the second phase can be dissolved by solution treatment and precipitated during high temperature aging.展开更多
The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th...The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.展开更多
35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface con...35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface conditions were evaluated by tensile modules of elasticity and Brinell hardness measurement. The results show that the overall Si Cp/Al interface condition in this experiment is good and three kinds of Si Cp/Al interfaces are present in the composites, which include vast majority of clean planer interfaces, few slight reaction interfaces and tiny amorphous interfaces. The combination mechanism of Si C and Al in the clean planer interface is the formation of a semi-coherent interface by closely matching of atoms and there are no fixed or preferential crystallographic orientation relationships between Si C and Al. MgAl2O4 spinel particles act as an intermediate to form semi-coherent interface with SiC and Al respectively at the slight reaction interfaces. When the composite is aged at 190 °C for 9 h after being solution-treated at 510 °C for 2 h, numerous discoid-shaped and needle-shaped nanosized precipitates dispersively exist in the composite and are semi-coherent of low mismatch with Al matrix. The Brinell hardness of composites arrives peak value at this time.展开更多
The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron...The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron microscopy and split Hopkinson pressure bar.The microstructure of as-cast Mg−xGd−3Y−0.5Zr alloys indicates that the addition of Gd can promote grain refinement in the casting.Due to the rapid cooling rate during solidification,a large amount of non-equilibrium eutectic phase Mg_(24)(Gd,Y)_(5) appears at the grain boundary of as-cast Mg−xGd−3Y−0.5Zr alloys.After solution treatment at 520℃ for 6 h,the Mg_(24)(Gd,Y)_(5) phase dissolves into the matrix,and the rare earth hydrides(REH)phase appears.The stress−strain curves validate that the solution-treated Mg−xGd−3Y−0.5Zr alloys with optimal Gd contents maintain excellent dynamic properties at different strain rates.It was concluded that the variation of Gd content and the agglomeration of residual REH particles and dynamically precipitated fine particles are key factors affecting dynamic mechanical properties of Mg−xGd−3Y−0.5Zr alloys.展开更多
The microstructure, composition and shape of precipitated phase under as-cast and finished product state of 5Cr21Mn9Ni4N steel with different rare earth (RE) amount were studied. Mechanical properties of 5Cr21Mn9Ni4...The microstructure, composition and shape of precipitated phase under as-cast and finished product state of 5Cr21Mn9Ni4N steel with different rare earth (RE) amount were studied. Mechanical properties of 5Cr21Mn9Ni4N steels withont RE addition and with RE added by 0. 2% in mass percent were tested respectively. The results indicate that the solid solution amount of RE is about 10^-6 -10^-5 order of magnitude in 5Cr21Mn9Ni4N steel. Dendrite of as-cast condition is refined obviously and dimension of interstitial phase is shortened when RE is added by 0.10%-0.20%. But the microstructure will be coarser if surplus RE is added. Precipitated phase under finished product state distributes evenly in nearly same size with RE added by 0. 2% which leads to a largely improved high temperature mechanical property.展开更多
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compar...The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.展开更多
The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was meas...The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was measured.Combined with X-ray diffraction(XRD),the types of precipitated phases among the joint were confirmed and then the strength mismatch mechanism was revealed.The results show the precipitated phases of 7075 aluminum alloy FSW joint mainly consist of MgZn_(2),AlCuMg and Al_(2)CuMg.The microzone of the joint experienced different thermal cycles,the types and sizes of precipitated phases are different and the strengthening effect is different.The strengthening effect of the AlCuMg and Al_(2)CuMg are better than that of MgZn_(2).The precipitated phase in the WNZ mainly includes AlCuMg and Al_(2)CuMg,as well as the grain size is fine,the microhardness in this zone is pretty high.The number of precipitated phase AlCuMg and Al_(2)CuMg is smaller in the TMAZ and the MgZn_(2)is relatively more,which lead the microhardness decrease.The number of precipitated phase MgZn_(2)is relative larger in the HAZ,as well as the grain coarsening,the microhardness in this zone is lowest of the joint.At the same time,there are the precipitate free zones(PFZ)among the 7075 aluminum alloy FSW joint,which decreases the microhardness of the whole joint to some extent.展开更多
Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grai...Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grains became finer and the tensile strength was improved with the increase of Y content in Mg-Y-1.5LPC-0.4Zr alloy.The results show that the formed precipitates responsible for age hardening change from fine hexagonal-shaped equilibrium Mg12RE phase to metastableβ′phase with orthorhombic-bc crystal structure when Y is added into Mg-1.5LPC-0.4Zr alloy,and the volume fraction of precipitate phases also increases.The cubic-shapedβ-Mg24Y5 precipitate phases were also observed at grain boundaries in Mg-6Y-1.5LPC-0.4Zr alloy. The distribution of prismatic shapedβ′phases and cubic shapedβ-Mg24Y5 precipitate phases in Mg matrix may account for the remarkable enhancement of tensile strength of Mg-Y-LPC-Zr alloy.The Mg-6Y-1.5LPC-0.4Zr alloy exhibits maximum tensile strength at peak-aged hardness,and the values are 250 MPa at room temperature and 210 MPa at 250°C.展开更多
Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stres...Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively.展开更多
The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T...The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...展开更多
In the present work,AZ91 alloy was successfully processed by equal channel angular pressing(ECAP)for up to 16 passes and rolling(R)for multiple passes with a total reduction of 75%in addition to a combination method w...In the present work,AZ91 alloy was successfully processed by equal channel angular pressing(ECAP)for up to 16 passes and rolling(R)for multiple passes with a total reduction of 75%in addition to a combination method with ECAP plus rolling(ECAP+R).The effects of various processes(ECAP,R and ECAP+R)on microstructure evolution were analyzed and the influence of ECAP process on the rolling performance was examined.The result shows that ECAP contributed to a homogenous grain structure and formed a texture with higher Schmidt factors that was easy for rolling.A plate with smoother surface and reduced edge cracks was observed in the ECAP+R process than in the single R process.Although the microstructure of the alloy was similar after ECAP+R and R process,the sample of ECAP+R was more refined and had stronger second phase precipitation than the sample of R,which resulted in better rolling characteristics,along with the external surfaces.展开更多
基金supported by the National Key R&D Program of China (No.2021YFB3501600)the Key R&D Program of Zhejiang Province (Nos.2021C01191 and 2021C01190).
文摘The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.
文摘The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.
基金Project(11YZ112)supported by Innovation Project of Shanghai Educational Committee in ChinaProject(J50503)supported by Shanghai Municipal Education Commission in China+1 种基金Project(10JC1411800)supported by Key Basic Research Project of Shanghai Committee of Science and Technology in ChinaProject(JWCXSL1101)supported by Shanghai Graduate Innovation Fund in China
文摘The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
基金Project(TN-15-TYK05) supported by the Research and Development Fund of Thermal Power Research Institute(TPRI),ChinaProject(2012AA050501)supported by the National High-tech Research and Development Program of China
文摘The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analysis. The as-received alloy shows a low hardness value of HB 168 and a highest toughness value of 96 J. After an aging treatment at 800 ℃ for 16 h and cooled in air (standard heat-treated condition), fine γ′ phase particles precipitate within the grains and small carbide particles are located at the grain boundaries. The hardness increases to HB 304 and the impact toughness decreases to 15 J after standard heat treatment. A maximum hardness value of HB 331 is achieved for the alloy aged at 750 ℃ for 300 h. With increasing the aging time from 300 to 10000 h, a decrease of the hardness and toughness is observed along with an enhanced quantity of M23C6 particles and the coarsening of γ′ phase.
基金Project (2011DAE22B01) supported by the Key Technologies Program of China during the 12th Fire-Year Plan Period
文摘Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.
基金Project(51571191)supported by the National Natural Science Foundation of ChinaProject(NY 20150102)supported by the National Energy Administration Program of China
文摘The phase precipitation behavior and tensile properties of an as-cast Ni-based alloy,IN617B alloy,after solution heat treatment and long-term aging treatment were investigated.Ti(C,N),M6C and M23C6 are the primary precipitates in as-cast microstructure.After solution heat treatment,most of carbides dissolve into the matrix except a few fine Ti(C,N)within grains.During long-term aging at 700°C,the phase precipitation behaviors of the alloy are characterized as follows:(1)M23C6 carbides at grain boundaries(GBs)transform from film-like shape to cellular shape and gradually coarsen due to the decrease of the surface energy and element aggregation to GBs;(2)M23C6 carbides within grains have a bar-like morphology with a preferential growth direction[110]and have a cube-on-cube coherent orientation relationship with the matrixγ;(3)γ?particles inhibit the coarsening of M23C6 within grains by constraining the diffusion of formation elements.Furthermore,the tensile strength of the alloy obviously increases,but the ductility significantly decreases after the aging for 5000 h.The alloy has a relatively stable microstructure which guarantees the excellent tensile properties during long-term aging.
文摘Phase precipitation and mechanical properties of TC21 titanium alloy with two different initial microstructures during heat treatment were determined. Result indicated that compared with coarse microstructure alloy, fine microstructure alloy developed finer microstructure, more unstable <em>ω</em> and <em>α</em><sub>2</sub> precipitates with much smaller size and lower volume fraction, and obtained better mechanical properties during heat treatment.
基金financially supported by the National Natural Science Foundation of China(No.51901018)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2019 QNRC001)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.FRF-AT-20-07,06500119)the Natural Science Foundation of Beijing Municipality,China(No.2212037)the National Science and Technology Resources Investigation Program of China(No.2019FY 101400)the Southwest Institute of Technology and Engineering Cooperation Fund,China(No.HDHDW5902020107)。
文摘Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation.The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate.In alkaline media,Al–Fe SPPs exhibit more positive potentials than the substrate,thus aggravating localized galvanic corrosion as cathodic phases.Moreover,finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster,and the current density on the Al substrate gradually decreases with distance.
文摘To explore the approaches of combined toughening and strengthening of the Al_3Ti-based L1_2 intermetallic alloys, multiphase Al_3Ti alloys formed by combining with reinforcement or by second phase precipitation are being studied. The interface reactions between Al_(66)Fe_9Ti_(25)matrix and SiC reinforcement were investigated. It is determined that SiC is chemically incompatible with the Al_(66)Fe_9Ti_(25)matrix, Al_2O_3 barrier coating on SiC by sol-gel process was developed to minimize the interfacial reactions. On the other hand, a new type of Al_3Ti-based alloy having a L1_2 matrix with second phase precipitation has been developed. The quaternary alloys based on Al_(66)Fe_9Ti_(25)and modified with Nb additions, consist of a L1_2 matrix and D0_(22) second phase in the annealed state ,but the second phase can be dissolved by solution treatment and precipitated during high temperature aging.
基金supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407.
文摘The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.
基金Project(51371077)supported by the National Natural Science Foundation of China
文摘35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface conditions were evaluated by tensile modules of elasticity and Brinell hardness measurement. The results show that the overall Si Cp/Al interface condition in this experiment is good and three kinds of Si Cp/Al interfaces are present in the composites, which include vast majority of clean planer interfaces, few slight reaction interfaces and tiny amorphous interfaces. The combination mechanism of Si C and Al in the clean planer interface is the formation of a semi-coherent interface by closely matching of atoms and there are no fixed or preferential crystallographic orientation relationships between Si C and Al. MgAl2O4 spinel particles act as an intermediate to form semi-coherent interface with SiC and Al respectively at the slight reaction interfaces. When the composite is aged at 190 °C for 9 h after being solution-treated at 510 °C for 2 h, numerous discoid-shaped and needle-shaped nanosized precipitates dispersively exist in the composite and are semi-coherent of low mismatch with Al matrix. The Brinell hardness of composites arrives peak value at this time.
基金supported by the National Natural Science Foundation of China (Nos.51575289,51705270)the Key Research and Development Project of Shandong Province,China (No.2019GHY112068)the Natural Science Foundation of Shandong Province,China (No.ZR2019PEE028)。
文摘The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron microscopy and split Hopkinson pressure bar.The microstructure of as-cast Mg−xGd−3Y−0.5Zr alloys indicates that the addition of Gd can promote grain refinement in the casting.Due to the rapid cooling rate during solidification,a large amount of non-equilibrium eutectic phase Mg_(24)(Gd,Y)_(5) appears at the grain boundary of as-cast Mg−xGd−3Y−0.5Zr alloys.After solution treatment at 520℃ for 6 h,the Mg_(24)(Gd,Y)_(5) phase dissolves into the matrix,and the rare earth hydrides(REH)phase appears.The stress−strain curves validate that the solution-treated Mg−xGd−3Y−0.5Zr alloys with optimal Gd contents maintain excellent dynamic properties at different strain rates.It was concluded that the variation of Gd content and the agglomeration of residual REH particles and dynamically precipitated fine particles are key factors affecting dynamic mechanical properties of Mg−xGd−3Y−0.5Zr alloys.
文摘The microstructure, composition and shape of precipitated phase under as-cast and finished product state of 5Cr21Mn9Ni4N steel with different rare earth (RE) amount were studied. Mechanical properties of 5Cr21Mn9Ni4N steels withont RE addition and with RE added by 0. 2% in mass percent were tested respectively. The results indicate that the solid solution amount of RE is about 10^-6 -10^-5 order of magnitude in 5Cr21Mn9Ni4N steel. Dendrite of as-cast condition is refined obviously and dimension of interstitial phase is shortened when RE is added by 0.10%-0.20%. But the microstructure will be coarser if surplus RE is added. Precipitated phase under finished product state distributes evenly in nearly same size with RE added by 0. 2% which leads to a largely improved high temperature mechanical property.
基金Projects(2019JJ60050,2018JJ3121) supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFBM20170004) supported by the Jiangsu Province Key Laboratory of Materials Surface Science and Technology,China
文摘The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.
基金supported by the Natural Science Foundation of Hebei(Grant No.E2012210001)Natural Science Foundation of Jiangsu(Grant No.BK20141181)。
文摘The precipitated phases in the WNZ,TMAZ,HAZ and BM of the friction stir welding(FSW)joint were observed using the transmission electron microscopy(TEM)and the lattice fringe spacing of the precipitated phases was measured.Combined with X-ray diffraction(XRD),the types of precipitated phases among the joint were confirmed and then the strength mismatch mechanism was revealed.The results show the precipitated phases of 7075 aluminum alloy FSW joint mainly consist of MgZn_(2),AlCuMg and Al_(2)CuMg.The microzone of the joint experienced different thermal cycles,the types and sizes of precipitated phases are different and the strengthening effect is different.The strengthening effect of the AlCuMg and Al_(2)CuMg are better than that of MgZn_(2).The precipitated phase in the WNZ mainly includes AlCuMg and Al_(2)CuMg,as well as the grain size is fine,the microhardness in this zone is pretty high.The number of precipitated phase AlCuMg and Al_(2)CuMg is smaller in the TMAZ and the MgZn_(2)is relatively more,which lead the microhardness decrease.The number of precipitated phase MgZn_(2)is relative larger in the HAZ,as well as the grain coarsening,the microhardness in this zone is lowest of the joint.At the same time,there are the precipitate free zones(PFZ)among the 7075 aluminum alloy FSW joint,which decreases the microhardness of the whole joint to some extent.
基金Project(2010A6100153)supported by Natural Science Foundation of Ningbo,China
文摘Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grains became finer and the tensile strength was improved with the increase of Y content in Mg-Y-1.5LPC-0.4Zr alloy.The results show that the formed precipitates responsible for age hardening change from fine hexagonal-shaped equilibrium Mg12RE phase to metastableβ′phase with orthorhombic-bc crystal structure when Y is added into Mg-1.5LPC-0.4Zr alloy,and the volume fraction of precipitate phases also increases.The cubic-shapedβ-Mg24Y5 precipitate phases were also observed at grain boundaries in Mg-6Y-1.5LPC-0.4Zr alloy. The distribution of prismatic shapedβ′phases and cubic shapedβ-Mg24Y5 precipitate phases in Mg matrix may account for the remarkable enhancement of tensile strength of Mg-Y-LPC-Zr alloy.The Mg-6Y-1.5LPC-0.4Zr alloy exhibits maximum tensile strength at peak-aged hardness,and the values are 250 MPa at room temperature and 210 MPa at 250°C.
基金supported by Natural Science Foundation of Shanxi province (20210302123135,20210302123163)Science and Technology Major Project of Shanxi province (20191102008)+6 种基金Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi province (202104021301022)The Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant (No.075-15-2022-1133)the National Research Foundation (NRF) grant funded by the Ministry of Science and ICT (2015R1A2A1A01006795) of Korea through the Research Institute of Advanced MaterialsThe central government guided local science and technology development projects (YDZJSX2021A010)China Postdoctoral Science Foundation (2022M710541)the projects of International Cooperation in Shanxi (201803D421086)Research Project Supported by Shanxi Scholarship Council of China (2022- 038)。
文摘Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively.
基金the National Natural Science Foundation of China (No. 50571081)the Aeronautical Science Foundation of China (No. 04G53042) for financial support
文摘The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...
基金This study was supported by the National Natural Science Foundation of China(51774109 and 51501039)the Key Research and Development Project of Jiangsu Province(BE2017148)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(KYLX16_0701)the Fundamental Research Funds for the Central Universities(HHU2016B45314&2018B48414)Q.X.is grateful for the support from the China Scholarship Council and the W.M.Keck Center for Advanced Microscopy and Micr1oanalysis at University of Delaware.
文摘In the present work,AZ91 alloy was successfully processed by equal channel angular pressing(ECAP)for up to 16 passes and rolling(R)for multiple passes with a total reduction of 75%in addition to a combination method with ECAP plus rolling(ECAP+R).The effects of various processes(ECAP,R and ECAP+R)on microstructure evolution were analyzed and the influence of ECAP process on the rolling performance was examined.The result shows that ECAP contributed to a homogenous grain structure and formed a texture with higher Schmidt factors that was easy for rolling.A plate with smoother surface and reduced edge cracks was observed in the ECAP+R process than in the single R process.Although the microstructure of the alloy was similar after ECAP+R and R process,the sample of ECAP+R was more refined and had stronger second phase precipitation than the sample of R,which resulted in better rolling characteristics,along with the external surfaces.