期刊文献+
共找到693篇文章
< 1 2 35 >
每页显示 20 50 100
A Cloud-resolving Study on the Role of Cumulus Merger in MCS with Heavy Precipitation 被引量:8
1
作者 付丹红 郭学良 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期857-868,共12页
The cumulus merging processes in generating the mesoscale convective system (MCS) on 23 August 2001 in the Beijing region are studied by using a cloud-resolving mesoscale model of MM5. The results suggest that the m... The cumulus merging processes in generating the mesoscale convective system (MCS) on 23 August 2001 in the Beijing region are studied by using a cloud-resolving mesoscale model of MM5. The results suggest that the merger processes occurred among isolated convective cells formed in high mountain region during southerly moving process play critical role in forming MCS and severe precipitating weather events such as hailfall, heavy rain, downburst and high-frequency lightning in the region. The formation of the MCS experiences multi-scale merging processes from single-cell scale merging to cloud cluster-scale merging, and high core merging. The merger process can apparently alter cloud dynamical and microphysical properties through enhancing both low- and middle-level forcing. Also, lightning flash rates are enhanced by the production of more intense and deeper convective cells by the merger process, especially by which, the more graupel-like ice particles are formed in clouds. The explosive convective development and the late peak lightning flash rate can be found during merging process. 展开更多
关键词 MM5 MCS cloud merger LIGHTNING precipitation
下载PDF
Properties of Cloud and Precipitation over the Tibetan Plateau 被引量:7
2
作者 WANG Chenghai SHI Hongxia +2 位作者 HU Haolin WANG Yi XI Baike 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1504-1516,共13页
The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitati... The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rain- fall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF (empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content (CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TE Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TE The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions. 展开更多
关键词 cloud liquid water content cloud ice water content precipitable liquid water Tibetan Plateau
下载PDF
Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean 被引量:2
3
作者 Shuang LUO Yunfei FU +2 位作者 Shengnan ZHOU Xiaofeng WANG Dongyong WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第4期359-376,共18页
The relationship between precipitation intensity and cloud water in typhoon systems remains unclear.This study combined time-and space-synchronized precipitation and spectral data obtained by the Precipitation Radar(P... The relationship between precipitation intensity and cloud water in typhoon systems remains unclear.This study combined time-and space-synchronized precipitation and spectral data obtained by the Precipitation Radar(PR)as well as the Visible and Infrared Scanner(VIRS)onboard the TRMM satellite,to overcome the limitations of precipitation properties and cloud parameters not being synchronized in previous studies.A merged dataset of near-surface rain rate(RR)and corresponding cloud water path(CWP)was established and used to analyze the potential correlation between cloud microphysical properties and precipitation,to deepen our understanding of the evolution of cloud to rain.In addition,25 collocated satellite overpasses of mature typhoon cases in the Northwest Pacific Ocean from 1998 to 2012 were obtained,and the relationships between the CWP and RR of 144515 pixels were analyzed in detail.The results show that the CWP and RR of mature typhoon systems with different precipitation types,precipitation cloud phases,and vertical depths of precipitation can be fitted by a notable sigmoid function,which may be useful for estimating CWP and parameterizing precipitation in models.Furthermore,the relationship was applied and tested with an independent sample to show that RR is a significant indicator of CWP. 展开更多
关键词 cloud water PATH convective precipitation STRATIFORM precipitation TRMM tropical cyclone
下载PDF
Preface to the Special Issue:Aerosols,Clouds,Radiation,Precipitation,and Their Interactions 被引量:1
4
作者 Xiquan DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期133-134,共2页
The treatment of aerosols, clouds, radiation, and precipitation in climate models, in addition to their interactions and as- sociated feedbacks, has long been one of the largest sources of uncertainty in predicting an... The treatment of aerosols, clouds, radiation, and precipitation in climate models, in addition to their interactions and as- sociated feedbacks, has long been one of the largest sources of uncertainty in predicting any potential future climate changes. Although many improvements have been made in CMIP5, aerosols, clouds, radiation, and their feedbacks are still a problem in climate models, as concluded in IPCC AR5 and published papers. Many studies have shown that modeled aerosols, clouds, radiation, and precipitation agree with observations within a certain range on a global scale; however, large biases occur at the regional scale. Characterizing the effects of aerosols and clouds on energy and the hydrological cycle and understanding the interactions among aerosols, clouds, radiation, and precipitation, are critical for weather forecasting and climate models. Significant improvements are needed, which require advanced observations and modeling at a range of spatial and temporal scales. 展开更多
关键词 Preface to the Special Issue AEROSOLS cloudS RADIATION precipitation
下载PDF
Effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency 被引量:1
5
作者 沈新勇 庆涛 李小凡 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期456-464,共9页
The effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency are investigated us ing grid-scale data from nine equilibrium sensitivity cloud-resolving model experiments driven ... The effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency are investigated us ing grid-scale data from nine equilibrium sensitivity cloud-resolving model experiments driven without large-scale vertical velocity. The precipitation efficiencies are respectively defined in surface rainfall, cloud, and rain microphysical budgets. We mathematically and physically demonstrate the relationship between these precipitation efficiencies. The 2 ℃ increases in spatiotemporal invariant sea surface temperature (SST) from 27 ℃ to 29 ℃ and from 29 ℃ to 31 ℃, and the inclusion of diurnal SST difference 1 ℃ and the 1℃ increase in diurnal SST difference generate opposite changes in the precipitation efficiency by changing ice cloud-radiation interactions. The radiative and microphysical processes of ice clouds have opposite effects on the precipitation efficiency because of the rainfall increase associated with the reduction in the saturation mixing ratio caused by the exclusion of radiative effects and the decrease in rainfall related to the reduction in net condensation caused by the exclusion of deposition processes. The radiative effects of water clouds on the precipitation efficiency are statistically insensitive to the radiative effects of ice clouds. 展开更多
关键词 sea surface temperature diurnal variations cloudS precipitation efficiency
下载PDF
Detection of Precipitation Cloud over the Tibet Based on the Improved U-Net 被引量:2
6
作者 Runzhe Tao Yonghong Zhang +2 位作者 Lihua Wang Pengyan Cai Haowen Tan 《Computers, Materials & Continua》 SCIE EI 2020年第12期2455-2474,共20页
Aiming at the problem of radar base and ground observation stations on the Tibet is sparsely distributed and cannot achieve large-scale precipitation monitoring.U-Net,an advanced machine learning(ML)method,is used to ... Aiming at the problem of radar base and ground observation stations on the Tibet is sparsely distributed and cannot achieve large-scale precipitation monitoring.U-Net,an advanced machine learning(ML)method,is used to develop a robust and rapid algorithm for precipitating cloud detection based on the new-generation geostationary satellite of FengYun-4A(FY-4A).First,in this algorithm,the real-time multi-band infrared brightness temperature from FY-4A combined with the data of Digital Elevation Model(DEM)has been used as predictor variables for our model.Second,the efficiency of the feature was improved by changing the traditional convolution layer serial connection method of U-Net to residual mapping.Then,in order to solve the problem of the network that would produce semantic differences when directly concentrated with low-level and high-level features,we use dense skip pathways to reuse feature maps of different layers as inputs for concatenate neural networks feature layers from different depths.Finally,according to the characteristics of precipitation clouds,the pooling layer of U-Net was replaced by a convolution operation to realize the detection of small precipitation clouds.It was experimentally concluded that the Pixel Accuracy(PA)and Mean Intersection over Union(MIoU)of the improved U-Net on the test set could reach 0.916 and 0.928,the detection of precipitation clouds over Tibet were well actualized. 展开更多
关键词 U-net fy-4a precipitation cloud dense skip connections residual network
下载PDF
Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions 被引量:7
7
作者 YAN Ya-Fei WANG Xiao-Cong LIU Yi-Min 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第1期44-53,共10页
本文采用CloudSat/CALIPSO和TRMM卫星资料,对比分析了不同强度降水时青藏高原与其邻近陆地和海洋地区的云宏观和微观垂直结构。结果表明:高原大地形对云层厚度和云顶高度具有压缩效应;与邻近地区相比,高原降水强度较弱,但是季节变化更明... 本文采用CloudSat/CALIPSO和TRMM卫星资料,对比分析了不同强度降水时青藏高原与其邻近陆地和海洋地区的云宏观和微观垂直结构。结果表明:高原大地形对云层厚度和云顶高度具有压缩效应;与邻近地区相比,高原降水强度较弱,但是季节变化更明显;夏季,无雨时,高原上云冰粒子主要位于较低高度(5-10公里),粒子尺寸和数浓度更丰富;随着降水增强,云冰含量增多,高层冰粒子的聚集度趋于紧密;然而即使是大暴雨,高原地区冰粒子的数浓度也最有可能在100-250 L.1之间,小于其邻近的陆地和热带海洋地区;此外,对于同等级的降水,高原地区冰粒子尺寸的谱分布宽于其它地区。 展开更多
关键词 cloudSat/CALIPSO 云宏观特征 云微物理特征 云垂直结构 降水 青藏高原
下载PDF
A Case Study of Impact of FY-2C Satellite Data in Cloud Analysis to Improve Short-Range Precipitation Forecast 被引量:5
8
作者 LIU Rui-Xia CHEN Hong-Bin +1 位作者 CHEN De-Hui XU Guo-Qiang 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期527-533,共7页
Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were us... Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied. 展开更多
关键词 卫星数据 降水预报 云分析 短程 LAPS 模拟降水量 案例 GRAPES
下载PDF
Variation of sulfate aerosol concentrations over the western Pacific and their effect on clouds, radiation and precipitation 被引量:1
9
作者 F.Parungo J.Rosinski +1 位作者 M.L.C.Wu C.T.Nagamoto 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第4期521-534,共14页
Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-sal... Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-salt sulfate aerosol particles are the major source of cloud condensation nuclei, b) the population of clouds and the total albedo are proportional to the concentration of condensation nuclei and consequently to the concentration of the non-sea-salt aerosol particles, and c) the amount of rainfall is inversely proportional to the concentration of non-sea-salt sulfate aerosol particles. It seems that anthropogenic sulfate aerosol particles affect the regional planetary albedo and climate and that the contribution from biogenically derived sulfate aerosol particles is of lesser importance. 展开更多
关键词 data Variation of sulfate aerosol concentrations over the western Pacific and their effect on clouds radiation and precipitation OVER
下载PDF
Precipitation responses to radiative processes of water- and ice-clouds: an equilibrium cloud-resolving modeling study 被引量:3
10
作者 XIN Jin LI Xiao-Fan 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第4期306-314,共9页
云辐射过程对制约天气与气候很重要。本文通过分析二维云分辨模式敏感性试验模拟平衡态平均资料研究降水对水云及冰云辐射过程的响应。模式给定的垂直速度为零。存在冰云辐射过程时去除水云辐射过程,以及去除冰云辐射过程会加强大气长... 云辐射过程对制约天气与气候很重要。本文通过分析二维云分辨模式敏感性试验模拟平衡态平均资料研究降水对水云及冰云辐射过程的响应。模式给定的垂直速度为零。存在冰云辐射过程时去除水云辐射过程,以及去除冰云辐射过程会加强大气长波辐射冷却和降低空气温度及饱和混合比。饱和混合比的减少导致水汽凝结增加及其相关的潜热释放的增加,从而增加降雨。去除水云辐射过程通过减少长波辐射冷却增加对流层上部局地大气变暖。而增强的变暖通过霰的融化增强而增加降水源与降水。 展开更多
关键词 辐射过程 水云 冰云 降水 长波辐射冷却 云分辨模式平衡态模拟
下载PDF
Effect of sub-cloud evaporation on the δ^18O of precipitation in Qilian Mountains and Hexi Corridor, China 被引量:4
11
作者 ZongXing Li Qi Feng +3 位作者 YaMin Wang JianGuo Li XiaoYan Guo YongGe Li 《Research in Cold and Arid Regions》 CSCD 2016年第5期378-387,共10页
The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the ... The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ^18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions. 展开更多
关键词 sub-cloud evaporation precipitation stable isotope Qilian Mountains
下载PDF
A Comprehensive Observational Analysis for the Effects of Gas Cannons on Clouds and Precipitation 被引量:1
12
作者 吴彬 王丹丹 +3 位作者 李艳芳 尹浩 杜爽 黎朋红 《Journal of Tropical Meteorology》 SCIE 2022年第2期237-251,共15页
To analyze the effects of gas cannons on clouds and precipitation,multisource observational data,including those from National Centers for Environmental Prediction(NCEP)reanalysis,Hangzhou and Huzhou new-generation we... To analyze the effects of gas cannons on clouds and precipitation,multisource observational data,including those from National Centers for Environmental Prediction(NCEP)reanalysis,Hangzhou and Huzhou new-generation weather radars,laser disdrometer,ground-based automatic weather station,wind profiler radar,and Lin'an C-band dualpolarization radar,were adopted in this study.Based on the variational dual-Doppler wind retrieval method and the polarimetric variables obtained by the dual-polarization radar,we analyzed the microphysical processes and the variations in the macro-and microphysical quantities in clouds from the perspective of the synoptic background before precipitation enhancement,the polarization echo characteristics before,during and after enhancement,and the evolution of the fine three-dimensional kinematic structure and the microphysical structure.The results show that the precipitation enhancement operation promoted the development of radar echoes and prolonged their duration,and both the horizontal and vertical wind speeds increased.The dual-polarization radar echo showed that the diameter of the precipitation particles increased,and the concentration of raindrops increased after precipitation enhancement.The raindrops were lifted to a height corresponding to 0 to-20℃due to vertical updrafts.Based on the disdrometer data during precipitation enhancement,the concentration of small raindrops(lgN_(w))showed a significant increase,and the mass-weighted diameter D_(m)value decreased,indicating that the precipitation enhancement operation played a certain“lubricating”effect.After the precipitation enhancement,the concentration of raindrops did not change much compared with that during the enhancement process,while the Dm increased,corresponding to an increase in rain intensity.The results suggest the positive effect of gas cannons on precipitation enhancement. 展开更多
关键词 gas cannon multisource observational data radar echo characteristics kinematic structure and microphysical structure disdrometer parameters cloud precipitation effect
下载PDF
Analysis of Airplane Precipitation Operation on Embedded Convective Clouds in Hunan Province
13
作者 Zhang Zhongbo Xu Dongying Wang Ling 《Meteorological and Environmental Research》 CAS 2015年第11期9-15,共7页
Based on NCEP 1°×1° reanalysis data, ground encryption houdy precipitation, FY-2E stationary satellite and Doppler radar data, the structural characteristics of precipitation clouds in Hunan Province an... Based on NCEP 1°×1° reanalysis data, ground encryption houdy precipitation, FY-2E stationary satellite and Doppler radar data, the structural characteristics of precipitation clouds in Hunan Province and the effects of airplane precipitation operation were analyzed. The results show that under the effects of low-pressure system and southwest monsoon, Hunan was rich in water vapor, which was beneficial to the maintaining of precipitation clouds. During the process of the artificial precipitation operation over Hunan Province, convection developed vigorously, and precipita- tion was strong in the south of the province; embedded convective clouds were dominant and precipitation was weak in the east of the province. Cloud optical thickness correlated with ground precipitation positively. After catalyzing, echo at high altitudes responded firstly, and the echo intensi- ty increased gradually; the response of low-altitude echo lagged behind that of high-altitude echo. It shows that catalysis could lead to increase of upper precipitation particles in size and quantity. As time goes on, upper precipitation particles descended to low altitudes, so that echo intensity in- creased at low altitudes. It is clearly seen that catalysis could lead to increase of echo intensity and prolong the lifetime of target clouds to improve the area of strong echo zone, showing obvious positive catalytic effect. At the same time, houdy average precipitation in the affected region tended to increase stably and was obviously more than that of the contrast region where hourly average precipitation reduced gradually with time. The changing trend of hourly average precipitation in the affected region correlated positively with the response of radar echo. 展开更多
关键词 Embedded convective clouds Airplane precipitation operation Doppler radar cloud structure Catalytic effect China
下载PDF
Deep Learning Framework for Precipitation Prediction Using Cloud Images
14
作者 Mirza Adnan Baig Ghulam Ali Mallah Noor Ahmed Shaikh 《Computers, Materials & Continua》 SCIE EI 2022年第8期4201-4213,共13页
Precipitation prediction(PP)have become one of the significant research areas of deep learning(DL)and machine vision(MV)techniques are frequently used to predict the weather variables(WV).Since the climate change has ... Precipitation prediction(PP)have become one of the significant research areas of deep learning(DL)and machine vision(MV)techniques are frequently used to predict the weather variables(WV).Since the climate change has left significant impact upon weather variables(WV)and continuously changes are observed in temperature,humidity,cloud patterns and other factors.Although cloud images contain sufficient information to predict the precipitation pattern but due to changes in climate,the complex cloud patterns and rapid shape changing behavior of clouds are difficult to consider for rainfall prediction.Prediction of rainfall would provide more meticulous assistance to the farmers to know about the weather conditions and to care their cash crops.This research proposes a framework to classify the dark cloud patterns(DCP)for prediction of precipitation.The framework consists upon three steps to classify the cloud images,first step tackles noise reduction operations,feature selection and preparation of datasets.Second step construct the decision model by using convolutional neural network(CNN)and third step presents the performance visualization by using confusion matrix,precision,recall and accuracy measures.This research contributes(1)real-world clouds datasets(2)method to prepare datasets(3)highest classification accuracy to predict estimated as 96.90%. 展开更多
关键词 Machine vision SIFT features dark cloud patterns precipitation AGRICULTURE
下载PDF
Vertical Distribution Characteristics of Precipitation Cloud in Tianjin Based on L-band Sounding Data
15
作者 Hui MENG Xiaobo LI Wenxia YANG 《Meteorological and Environmental Research》 CAS 2021年第2期17-19,共3页
Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation ... Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer. 展开更多
关键词 L-band sounding Vertical structure of cloud Relative humidity precipitation cloud
下载PDF
Numerical study of aerosol effect on three types of clouds and precipitation in Beijing area
16
作者 ZhiGuo Yue XiaoDong Liu ShuYan Liu 《Research in Cold and Arid Regions》 2012年第4期342-350,共9页
Three types of rainfall (storm, moderate and slight rainfall) in the Beijing area were simulated by the Weather Research and Fore- cast (WRF3.2) model coupled with Milbrandt-two-moment cloud microphysics scheme, t... Three types of rainfall (storm, moderate and slight rainfall) in the Beijing area were simulated by the Weather Research and Fore- cast (WRF3.2) model coupled with Milbrandt-two-moment cloud microphysics scheme, to explore the effect of aerosols on clouds and precipitation under continental and maritime aerosol scenarios. Results indicate that an increase of aerosols has various effects on clouds and precipitation. (1) The amount of surface precipitation is obviously affected. With an increase of aerosol con- centration, the 48-hr total precipitation of storm and moderate rainfall decreased by 23% and 16.6%, respectively, and the 24-hr total precipitation of slight rainfall decreased by 14.0%. (2) The distribution of surface precipitation is also clearly affected. The average precipitation for a rain storm increases in most parts of western Beijing and decreases by more than 20 mm in most parts of eastern Beijing with increasing aerosol concentration. The average precipitation of moderate rainfall decreases by 0.1-5 mm in most parts of the Beijing area. The effect of increased aerosol concentration is weak for slight rainfall distribution in the study area. (3) With an increase of aerosol concentration, a narrower width and lower precipitation peak value are found in the storm rainfall, and its duration is prolonged for the high aerosol concentration. An earlier precipitation termination of moderate rainfall is found with increasing aerosol concentration. (4) The upper-air hydrometeors vary with aerosol concentration, For storm and moderate rainfall, significantly higher cloud water concentration and lower rain water were found under the continental aerosol scenario. 展开更多
关键词 AEROSOL Beijing area clouds and precipitation indirect effect numerical simulation
下载PDF
Application of Cloud Precipitation Analysis System in Weather Modification in Fuxin
17
作者 Ke SUN Xu ZHANG +4 位作者 Xilong NING Jianing BAI Ning LI Baoli SUN Zekai WEI 《Meteorological and Environmental Research》 CAS 2021年第4期13-16,20,共5页
Based on Cloud Precipitation Analysis System(CPAS),the potential for weather modification during the four types of typical precipitation processes in Fuxin area in 2019 was analyzed,and the model forecast products bef... Based on Cloud Precipitation Analysis System(CPAS),the potential for weather modification during the four types of typical precipitation processes in Fuxin area in 2019 was analyzed,and the model forecast products before weather modification operation and the surface rainfall were compared. 展开更多
关键词 cloud precipitation Weather modification APPLICATION
下载PDF
Numerical Simulation on the Rainout-Removal of Sulfur Dioxide and Acidification of Precipitation from Stratiform Clouds
18
作者 秦瑜 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第1期75-87,共13页
The rainout-removal of SO2 and the acidification of precipitation from stratiform clouds are simulated using a one-dimensional, time-dependent model, parameterized microphysically in which dissolution and dissociation... The rainout-removal of SO2 and the acidification of precipitation from stratiform clouds are simulated using a one-dimensional, time-dependent model, parameterized microphysically in which dissolution and dissociation of gaseous SO2 and H2O2, and oxidation reaction in aqueous phase are taken into account. The effects of dynamic factors, including updraft flow and turbulent transport, and the concentration of gaseous SO2 and H2O2 being transported into the clouds on pH value of the precipitation, the conversion rate S(Ⅳ)-S(Ⅵ) and the wet deposition rate of SO2 are discussed. 展开更多
关键词 Numerical Simulation on the Rainout-Removal of Sulfur Dioxide and Acidification of precipitation from Stratiform clouds
下载PDF
IMPACT OF CLOUD DROPLETS SPECTRAL UNCERTAINTY ON MESOSCALE PRECIPITATION
19
作者 周广强 赵春生 秦愉 《Journal of Tropical Meteorology》 SCIE 2006年第1期95-96,共2页
关键词 发射物 中尺度模型 辐射光线 数值模拟
下载PDF
Improvement of cloud microphysical parameterization and its advantages in simulating precipitation along the Sichuan-Xizang Railway
20
作者 Xiaoqi XU Zhiwei HENG +6 位作者 Yueqing LI Shunjiu WANG Jian LI Yuan WANG Jinghua CHEN Peiwen ZHANG Chunsong LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期856-873,共18页
The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause o... The Sichuan-Xizang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause of these disasters;therefore,accurate simulation of the precipitation in this region is highly important. In this study, the descriptions for uncertain processes in the cloud microphysics scheme are improved;these processes include cloud droplet activation, cloud-rain autoconversion, rain accretion by cloud droplets, and the entrainment-mixing process. In the default scheme, the cloud water content of different sizes corresponds to the same cloud droplet concentration, which is inconsistent with the actual content;this results in excessive cloud droplet size, unreasonable related conversion rates of microphysical process(such as cloud-rain autoconversion), and an overestimation of precipitation. Our new scheme overcomes the problem of excessive cloud droplet size. The processes of cloudrain autoconversion and rain accretion by cloud droplets are similar to the stochastic collection equation, and the mixing mechanism of cloud droplets is more consistent with that occurred during the actual physical process in the cloud. Based on the new and old schemes, multiple precipitation processes in the flood season of 2021 along the Sichuan-Xizang Railway are simulated, and the results are evaluated using ground observations and satellite data. Compared to the default scheme, the new scheme is more suitable for the simulation of cloud physics, reducing the simulation deviation of the liquid water path and droplet radius from 2 times to less than 1 time and significantly alleviating the overestimation of precipitation intensity and range of precipitation center. The average root-mean-square error is reduced by 22%. Our results can provide a scientific reference for improving precipitation forecasting and disaster prevention in this region. 展开更多
关键词 The Sichuan-Xizang Railway cloud microphysics precipitation Model improvement
原文传递
上一页 1 2 35 下一页 到第
使用帮助 返回顶部