期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Effects of Pre-Strain on Bake Hardenability and Precipitation Behavior of Al-Mg-Si Automotive Body Sheets
1
作者 Guanjun Gao Lizhen Yan Xiwu Li 《Journal of Materials Science and Chemical Engineering》 2024年第7期53-64,共12页
The study investigates the effects of pre-strain on the bake hardenability and precipitation behavior of Al-Mg-Si automotive body sheets. The scanning electron microscopy, transmission electron microscopy, tensile tes... The study investigates the effects of pre-strain on the bake hardenability and precipitation behavior of Al-Mg-Si automotive body sheets. The scanning electron microscopy, transmission electron microscopy, tensile test, Vickers hardness test, and differential scanning calorimetry were conducted for the purpose. It was found that the pre-strain treatment partially inhibits the natural aging hardening effect but cannot completely eliminate it. The pre-straining significantly enhances the bake hardening effect, with the 5% pre-strain sample showing the highest increase in yield strength and hardness. The formation of fine β" precipitates and dislocation structures contribute to the observed strengthening. Additionally, the study highlights the importance of optimizing pre-strain levels to achieve the best balance between strength and ductility in bake-hardened aluminum alloys. 展开更多
关键词 Al-Mg-Si Alloy PRE-STRAIN Bake Hardenability precipitation behavior CLUSTERS
下载PDF
Microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging 被引量:2
2
作者 Ya-ya Zheng Bing-hui Luo +1 位作者 Wei Xie Wang Li 《China Foundry》 SCIE CAS CSCD 2023年第1期57-62,共6页
The microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging were studied using hardness testing, conductivity testing, differential scanning calorimetry(DSC), and high resolution tra... The microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging were studied using hardness testing, conductivity testing, differential scanning calorimetry(DSC), and high resolution transmission electron microscopy(HRTEM). The results show that the precipitation sequence of the Al-Mg-Si alloy during initial aging can be represented as: supersaturated solid solution → spherical Mg/Si clusters → needle-like Guinier Preston(GP) zone → β″. Clusters are completely coherent with the Al matrix. The GP zone with relatively complete independent lattice parameters that differ slightly from the Al matrix parameters, is oriented along the direction of <111>Aland lying on {111}Alplane. The strength of the Al-Mg-Si alloy is greatly enhanced by the threedimensional strain field that exists between the β″ phase and the two {200}Alplanes. After aging at 170 ℃ for 6 h, the hardness reaches the peak of 127 HV and remains for a long time. At this stage, the electrical conductivity keeps relatively stable due to the formation of coherent precipitates(Mg/Si clusters/GP zones) and the reduction in solute atom concentration in the Al matrix. The severe coarsening and decreased number density of the β″ phase during the over-aging stage result in a significant decrease in the hardness. 展开更多
关键词 Al-Mg-Si alloy precipitation behavior strengthening mechanism strain field β″
下载PDF
Effect of aging time on precipitation behavior, mechanical and corrosion properties of a novel Al-Zn-Mg-Sc-Zr alloy 被引量:6
3
作者 李波 潘清林 +1 位作者 陈从平 尹志民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2263-2275,共13页
The precipitation behavior, mechanical properties and corrosion resistance of a novel Al-Zn-Mg-Sc-Zr alloy aged at different time were studied by optical microscopy(OM), scanning electron microscopy(SEM), transmis... The precipitation behavior, mechanical properties and corrosion resistance of a novel Al-Zn-Mg-Sc-Zr alloy aged at different time were studied by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), tensile tests, potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that with increasing aging time at 120 ℃, the hardness and tensile strength of the alloy increased rapidly at first and then slightly decreased. The resistance of exfoliation corrosion(EXCO) and intergranular corrosion(IGC) increased gradually with increasing aging time. The same trend of corrosion properties was demonstrated by electrochemical polarization curves and EIS test. The characteristics of grain boundary precipitates and precipitate free zone(PFZ) had a significant influence on the mechanical and corrosion behaviors of the studied alloy. On the basis of TEM observations, the size of grain boundary precipitates and the width of PFZ became larger, and the distributed spacing of grain boundary precipitates was enhanced with increasing aging time. 展开更多
关键词 aluminum alloy heat treatment precipitation behavior Al3(Sc Zr) particles electrochemical impedance spectroscopy
下载PDF
Effects of external stress aging on morphology and precipitation behavior of θ'' phase in Al-Cu alloy 被引量:4
4
作者 傅上 易丹青 +3 位作者 刘会群 江勇 王斌 胡湛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2282-2288,共7页
The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission e... The exposure of Al-5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ" phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ" phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-flee aging (453 K, 6 h). The precipitation process of θ" phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ" phase because the critical nucleation energy is decreased by 19% under stress aging. 展开更多
关键词 Al-Cu alloy stress aging MORPHOLOGY precipitation behavior first principle calculation interface energy
下载PDF
Effect of different quenching processes following solid-solution treatment on properties and precipitation behaviors of 7050 alloy 被引量:8
5
作者 Lei KANG Gang ZHAO +2 位作者 Guang-dong WANG Kun LIU Ni TIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2163-2173,共11页
The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron mic... The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment. 展开更多
关键词 7050 aluminum alloy quenching method precipitation behavior electrical conductivity nucleation site
下载PDF
Precipitation behaviors of X70 acicular ferrite pipeline steel 被引量:6
6
作者 Hao Yu Yi Sun +2 位作者 Qixiang Chen Haitao Jiang Lihong Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期523-527,共5页
The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TE... The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical cornposition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research. 展开更多
关键词 pipeline steel acicular ferrite MICROSTRUCTURE CARBONITRIDE precipitation behavior THERMODYNAMICS
下载PDF
Characterizations of precipitation behavior of Al-Mg-Si alloys under different heat treatments 被引量:2
7
作者 Hui Li Jia-yi Wang +2 位作者 Hai-tao Jiang Zheng-feng Lu Zhen-feng Zhu 《China Foundry》 SCIE 2018年第2期89-96,共8页
The solidification-precipitation behavior of Al-Mg-Si multicomponent alloys has long been an absorbing topic. Experiments were carried out to analyze the precipitation behaviors of Al-Mg-Si alloys under different heat... The solidification-precipitation behavior of Al-Mg-Si multicomponent alloys has long been an absorbing topic. Experiments were carried out to analyze the precipitation behaviors of Al-Mg-Si alloys under different heat treatments. All specimens were homogenized at 570 ℃ for 8 h, and then solution treated at 540 ℃ for 55 min. Subsequently, the specimens were age treated for different times at temperatures of 100 ℃, 150 ℃ and 180 ℃, respectively. The experimental results show that the occurrence of dispersed free zones (DFZ) is caused by the uneven distribution of dispersed phase. During the aging process, pre-β" phases form at the initial stage and an aging temperature of 100 ℃is too low to complete the transformation of pre-β" to β". At 150℃, the precipitation sequence is concluded as SSSS-pre-β"-pre-β"+β"-β"-β'-β. Moreover, changes in sizes and densities of the pre-β", β"and β' phases during the aging process has an important influence on the evolution of microhardness and electrical resistivity. The microhardness peak value of 150 ℃ is similar to that of 180 ℃, which is -141 HV. While, at 100℃, the microhardness increases slowly, and the attainable value is 127 HV up to 19 days. When the aging temperature is 100 ℃, the electrical resistivity has the highest average value. When the aging temperature exceeds 100 ℃, with the occurrence and growth of β"and β', the resistivity has a distinct decrease with prolonged aging time. 展开更多
关键词 Al-Mg-Si alloy heat treatment precipitation behavior electrical resistivity
下载PDF
Static and Dynamic Precipitation Behavior of the Al-20wt.% Zn Alloy
8
作者 刘崇宇 江鸿杰 +4 位作者 王春霞 亓海全 李义兵 马明臻 刘日平 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期63-66,共4页
The static and dynamic precipitation behavior of solution-treated binary Al-20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al-... The static and dynamic precipitation behavior of solution-treated binary Al-20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al-Zn alloy exhibits high thermal stability during aging, and low densities of nano-sized Zn particles are precipitated along with AI grain boundaries after aging at 200℃ for 13 h. Compared with static precipitation, dynamic precipitation occurs more easily in the Al-Zn alloy. Zn clusters are obtained after cold rolling at an equivalent plastic strain of 0.6, and the size of the Zn phase reaches hundreds of nanometers when the strain is increased to 12.1. The results show that the speed of static precipitation can be significantly enhanced after the application of 2.9 rolling strain. Grain refinement and defects induced by cold rolling are considered to promote Zn precipitation. The hardness of Al-Zn alloy is also affected by static and dynamic precipitations. 展开更多
关键词 Zn Alloy in on AS AL Static and Dynamic precipitation behavior of the Al-20wt of
下载PDF
Effect of austenitizing condition on mechanical properties,microstructure and precipitation behavior of AISI H13 steel
9
作者 An-gang Ning Yang Liu +3 位作者 Rui Gao Stephen Yue Ming-bo Wang Han-jie Guo 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第1期143-156,共14页
The effects of austenitizing temperature(1223,1303,and 1373 K)and holding time(1-1500 s)on the microstructure,mechanical properties,and precipitation behavior of the H13 hot work die steel were investigated.The result... The effects of austenitizing temperature(1223,1303,and 1373 K)and holding time(1-1500 s)on the microstructure,mechanical properties,and precipitation behavior of the H13 hot work die steel were investigated.The results indicate a softening phenomenon when H13 steel is austenitized at 1303 K beyond 900 s and 1373 K beyond 600 s,respectively.For the sample held for 1200 s,the tensile strength is found capable of reaching up to 2.2 GPa when quenched from a temperature above 1303 K.Meanwhile,prior-austenite grain size increases with the increase in austenitizing temperature.The kinetic behavior of the precipitates(mainly MC-type carbides)in H13 steel could be elaborated through the principles set forth by the Arrhenius and Avrami equations.Finally,the comprehensive strengthening of the H13 steel was discussed in detail.The results show that the activation energy of the transformed fraction of carbides is higher than that of the diffusion process for common alloying elements(Cr,V,Mo,and Ni)found in the austenite.This suggests that it would be difficult for precipitates to dissolve into the matrix when H13 steel is austenitized at high temperatures.With the increasing austenitizing temperature,the precipitation fraction decreases,and the dislocation density increases.The dislocation strengthening is regarded as the dominant strengthening contributed to yield strength in as-quenched H13 steel. 展开更多
关键词 H13 steel AUSTENITIZING Mechanical property precipitation behavior Comprehensive strengthening
原文传递
Influence of N on precipitation behavior,associated corrosion and mechanical properties of super austenitic stainless steel S32654 被引量:10
10
作者 Shucai Zhang Huabing Li +6 位作者 Zhouhua Jiang Zhixing Li Jingxi Wu Binbin Zhang Fei Duan Hao Feng Hongchun Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第7期143-155,共13页
The influence of N on the precipitation behavior,associated corrosion,and mechanical properties of S32654 were investigated by microstructural,electrochemical,and mechanical analyses.Increasing the N content results i... The influence of N on the precipitation behavior,associated corrosion,and mechanical properties of S32654 were investigated by microstructural,electrochemical,and mechanical analyses.Increasing the N content results in several alterations:(1) grain refinement,which promotes intergranular precipitation;(2) a linear increase in the driving force for Cr2 N and Mo activity,which accelerates the precipitation of intergranular Cr2 N and π phase,respectively;(3) a linear decrease in the driving force for σ phase and Cr activity,which suppresses the formation of intragranular σ phase.The total amount of precipitates first decreased and then increased with the N content increasing.Furthermore,the intergranular corrosion susceptibility depended substantially on the total amount of precipitates and also first exhibited a decreasing and then an increasing trend as the N content increased.In addition,aging precipitation caused a considerable decrement in the ultimate tensile strength(UTS) and a remarkable increment in the yield strength(YS).Both the UTS and YS always increased with N content increasing throughout the solution and aging process.Whereas the elongation was considerably sensitive to the aging treatment,it exhibited marginal variation with the N content increasing. 展开更多
关键词 Super austenitic stainless steel NITROGEN precipitation behavior Intergranular corrosion Mechanical properties
原文传递
Aging Precipitation Behavior of 18Cr-16Mn-2Mo-1.1N High Nitrogen Austenitic Stainless Steel and Its Influences on Mechanical Properties 被引量:10
11
作者 LI Hua-bing, JIANG Zhou-hua, FENG Hao, MA Qi-feng, ZHAN Dong-ping (School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第8期43-51,共9页
The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM... The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the 'nose' temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks. 展开更多
关键词 solution-treated condition aging precipitation behavior time-temperature-precipitation curve high nitrogen austenitic stainless steel mechanical property
原文传递
Precipitation Behavior and Its Strengthening Effect of X100 Pipeline Steel 被引量:7
12
作者 NIU Tao KANG Yong-lin +2 位作者 GU Hong-wei YIN Yu-qun QIAO Ming-liang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第11期73-78,共6页
Using TEM (transmisson electron microscopy), electron diffraction, EDX (energy dispersive X-ray) analysis and physicochemical phase analysis, the morphology, crystal structure, size distribution and chemical compo... Using TEM (transmisson electron microscopy), electron diffraction, EDX (energy dispersive X-ray) analysis and physicochemical phase analysis, the morphology, crystal structure, size distribution and chemical composition of precipitates in the microstructure of high strength Nb-microalloyed Xl00 pipeline steel were investigated, and the strengthening effect of precipitation was quantitatively calculated with Ashhy-Orowan correction model. The precipitates obtained in X100 pipeline steel can be divided into two kinds: "complex" and "single" particles by morphology. The EDX analysis of "single" precipitates reveals that the chemical composition matches well with particle dimensions, especially the Nb to Ti ratio regularly decreases with the increase of particle size. The yield strength increments in the way of precipitation strengthening of X100 pipeline steel reached about 52 MPa, suggesting that the precipitation strengthening is not the dominative strengthening mechanism for X100 pipeline steel. 展开更多
关键词 X100 pipeline steel CARBONITRIDE precipitation behavior strengthening effect
原文传递
Effect of micro-alloying La on precipitation behavior, mechanical properties and electrical conductivity of Al-Mg-Si alloys 被引量:5
13
作者 ZHENG QiuJu JIANG HongXiang +2 位作者 HE Jie ZHANG LiLi ZHAO JiuZhou 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期2012-2022,共11页
The rapid industrial development calls for alloys that possess higher comprehensive properties. In this study, the effect of microalloying La addition on the precipitation behavior during artificial aging as well as t... The rapid industrial development calls for alloys that possess higher comprehensive properties. In this study, the effect of microalloying La addition on the precipitation behavior during artificial aging as well as the mechanical properties and electrical conductivity of Al-Mg-Si alloys were investigated by thermal analysis, microstructural characterizations and properties tests.The results demonstrated that micro-alloying La addition does not change the whole precipitation sequence during the artificial aging of Al-Mg-Si alloys as well as the atomic structure of the precipitates. However, the higher La-vacancy binding energy as well as the strong La-Si and La-Mg interactions can decrease the solubility of Si and Mg in the Al matrix and the β″ precipitation activation energy from 89.9 to 76.7 kJ/mol, leading to the improvement of the strength and electrical conductivity of Al-Mg-Si alloys simultaneously. The microstructural features affecting the strength and electrical conductivity were theoretically discussed in terms of the La addition. 展开更多
关键词 aluminum alloys micro-alloying La precipitation behavior HARDNESS electrical conductivity
原文传递
Analysis of Microstructure Characteristics and Precipitation Behavior of Automobile Beam Steels Produced by Compact Strip Production 被引量:6
14
作者 ZHAO Zheng-zhi LIU Jie ZHAO Ai-min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第3期56-61,共6页
The microstructure characteristics and precipitation behavior of automobile beam steels produced by compact strip production (CSP) were investigated by use of scanning electron microscopy (SEM) transmission elect... The microstructure characteristics and precipitation behavior of automobile beam steels produced by compact strip production (CSP) were investigated by use of scanning electron microscopy (SEM) transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy. The result shows that the final microstructure is mainly composed of polygonal ferrite and small amount of pearlite, and the average ferrite grain size is about 3-6μm. Small amount addition Ti to aluminium-killed steel can help to refine the microstructure and improve the mechanical properties. A large number of fine precipitates have been observed in automobile beam steels. The mean particle size is about 10-30 nm. Remarkable strengthening and grain refinement can be obtained by these nano-particles. 展开更多
关键词 compact strip production MICROSTRUCTURE precipitation behavior
原文传递
Phase precipitation behavior and tensile property of a Ti-Al-Sn-Zr-Mo-Nb-W-Si titanium alloy 被引量:5
15
作者 Wen-Jing Zhang Xiao-Yun Song +2 位作者 Song-Xiao Hui Wen-Jun Ye Wei-Qi Wang 《Rare Metals》 SCIE EI CAS CSCD 2018年第12期1064-1069,共6页
The characteristic of precipitation behavior of a2 phase and silicide, and the tensile properties at room temperature and 650℃after heat treatments in anovel TiAl-Sn-Zr-Mo-Nb-W-Si titanium alloy(BTi-6431 S) were in... The characteristic of precipitation behavior of a2 phase and silicide, and the tensile properties at room temperature and 650℃after heat treatments in anovel TiAl-Sn-Zr-Mo-Nb-W-Si titanium alloy(BTi-6431 S) were investigated by microstructure analysis and mechanics performance testing. The results show that no second phase precipitates after solution treatment(980 ℃/2 h, air cooling(AC)). However, when the solution-treated specimens are aged at 600 ℃(600 ℃/2 h,AC),α;phase precipitates in the primary α phase, and the size of α;phase increases with the aging temperature increasing to 750 ℃. Meanwhile, 50-100-nm S2-type silicide particles precipitate along lamellar phase boundaries of transformed β phase after aging at 750 ℃. BTi-6431 S alloy shows the best650 ℃ ultimate tensile strength(UTS) and yield strength(YS) when treated in solution treatment. However, aging treatment results in a decline in 650 ℃ ultimate tensile strength. This may be attributed to the loss of solution strengthening due to the depletion of Al, Si and Zr of the matrix caused by the precipitation of Ti;Al and(TiZr);Si;.Silicide is a brittle phase; therefore, its precipitation causes a sharp decrease in the room-temperature ductility of BTi-6431 S alloy. 展开更多
关键词 High-temperature titanium alloy precipitation behavior α_2 phase SILICIDE Tensile properties
原文传递
Kinetics of Precipitation Behavior of Second Phase Particles in Ferritic Ti-Mo Microalloyed Steel 被引量:2
16
作者 HU Bin-hao CAI Qing-wu WU Hui-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第7期69-77,共9页
Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipi-tation of Ti(C,N) in deformed austenite and (Ti,Mo)C in ferrite of ferritic Ti-Mo microalloyed steel T... Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipi-tation of Ti(C,N) in deformed austenite and (Ti,Mo)C in ferrite of ferritic Ti-Mo microalloyed steel The size dis-tribution, amount and chemical composition of precipitates were obtained by using physicochemical phase analysis, and calculated according to thermodynamics and kinetics. The experimental results demonstrated that the incubation time was reduced with increasing Ti content, and prolonged with the addition of Mo. After 30 % deformation at 850 ℃, the nucleation of strain-induced Ti(C,N) was a relatively slow process. On the other hand, the temperature where the nucleation rate of (Ti, Mo)C in ferrite was the highest descended first and then ascended with increasing Ti content, and so did the temperature where the incubation time was the shortest. The key point is that the tempera-ture of steel containing about 0.09 % Ti is the lowest. The mass fraction of MC-type particles with size smaller than 10 nm in steel containing 0.09% Ti and 0.2% Mo reached 73.7%. The size distributions of precipitates in steel containing 0.09% Ti were relatively concentrated compared with that in steel containing 0.07% Ti. 展开更多
关键词 ferritic Ti-Mo microalloyed steel precipitation behavior second phase particle stress relaxation parti-cle size distribution
原文传递
Unveiling the precipitation behavior and mechanical properties of Co-free Ni_(47-x)Fe_(30)Cr_(12)Mn_(8)Al_(x)Ti_(3) high-entropy alloys 被引量:1
17
作者 Jiantao Fan Liming Fu +4 位作者 Yanle Sun Feng Xu Yi Ding Mao Wen Aidang Shan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期25-34,共10页
Precipitate hardening is considered as an effective method to strengthen High-and medium-entropy alloys(HEAs and MEAs),especially the recently developed Co-free HEAs/MEAs,In this work,a systematic study on precipitati... Precipitate hardening is considered as an effective method to strengthen High-and medium-entropy alloys(HEAs and MEAs),especially the recently developed Co-free HEAs/MEAs,In this work,a systematic study on precipitation and mechanical behaviors of a Co-free HEAs with dilute amount of Al addition,Ni_(47-x)Fe_(30 C)r_(12)Mn_(8) Al_(x)Ti_(3)(x=2 at.%,5 at.% and 7 at.%),is presented.Results shown that the Ni_(45)Fe_(30)Cr_(12)Mn_(8) Al_(2) Ti_(3) has a face-centered cubic(FCC)+L1_(2)+η three-phased structure.With increasing Al content,the formation of η phase is inhibited,accompanying with an enhanced formation of B2 phase,and FCC+L1_(2)+B2 three-phased structure is thus observed in alloys with x=5 and 7.The constrained lattice mismatch between FCC matrix and L1_(2) precipitates is decreased with increasing Al content,leading to an enhanced precipitation behavior of L1_(2) phase.As a result of microstructural evolution,the mechanical properties of the aged HEAs changed:the Ni_(42)Fe_(30)Cr_(12)Mn_(8) Al_5 Ti_(3) alloy exhibits a better combination of a yield strength of 661 MPa and tensile ductility of 29.7% as compared to the 2 at.% Al alloyed HEA;and addition of Al beyond 5 at.% results in an increase of strength with a large expense of ductility.We believe that the present work is helpful for developing high-performance Co-free HEAs/MEAs strengthened by nanoprecipitates via composition optimizing. 展开更多
关键词 High-entropy alloys MICROSTRUCTURES precipitation behavior Mechanical properties
原文传递
Influence of cooling rate on phase transformation and precipitation behavior of Ti-bearing steel in continuous cooling process 被引量:1
18
作者 Xiao-lin Li Chi Jin +4 位作者 Hao-zhe Li Xiao-xiao Hao Yi He Xiang-tao Deng Zhao-dong Wang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第1期165-174,共10页
The influence of cooling rate on microstructural evolution and precipitation behavior in Ti,Ti–Nb and Ti-Mo low-carbon steels during the continuous cooling process was studied by dilatometer method,optical microscopy... The influence of cooling rate on microstructural evolution and precipitation behavior in Ti,Ti–Nb and Ti-Mo low-carbon steels during the continuous cooling process was studied by dilatometer method,optical microscopy,and transmission electron microscopy.The results indicated that austenite transformation temperature decreased with the increasing cooling rate in three steels.The addition of Nb and Mo promoted bainite and martensite transformation and improved the hardenability of steels.In addition,precipitates formed in deformed austenite and ferrite can be observed simultaneously.Deformation in the austenite non-recrystallization zone can introduce a large number of deformation bands,and then,the precipitates preferentially nucleated in these deformation bands.In the following process,randomly distributed precipitates and interphase precipitates will be formed in ferrite.The precipitates formed in deformed austenite obey Kurdjumov-Sachs orientation relationship with the matrix,while the precipitates formed in ferrite obey Baker-Nutting orientation relationship with the matrix.The addition of Nb and Mo in Ti-bearing steels decreased the precipitates size and increased the number density of precipitates and then improved the precipitation hardening.And the effect of Mo addition is more obvious than that of Nb addition. 展开更多
关键词 Ti-microalloyed steel Continuous cooling transformation precipitation behavior Precipitate-free zone Orientation relationship
原文传递
Effect of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy
19
作者 Xian-wen YANG Ling-ying YE +1 位作者 Yong ZHANG Quan-shi CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2415-2430,共16页
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties... The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively. 展开更多
关键词 7A75 aluminum alloy interrupted aging aging precipitation behavior mechanical properties intergranular corrosion exfoliation corrosion stress corrosion cracking
下载PDF
Complex Precipitation Mechanism of Ti-Nb-V Microalloyed Bainitic Base High Strength Steel 被引量:4
20
作者 PANG Qihang GUO Jing +4 位作者 LI Weijuan TANG Di ZHAO Zhengzhi QI Huan WANG Jiaji 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1444-1450,共7页
The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission ele... The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature. 展开更多
关键词 bainite base high strength steel therm odynamic and dynamic complex precipitation behavior precipitation morphology
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部