High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by...High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by the digital circuit, after being magnified and sharpened through multistage isolated amplifiers and rising edge sharpening device, high-voltage steep delay pulses with precision less than μs level are obtained. This system has been used in our compact magnetic flux compression generator experiments in place of the traditional primaeord delay device.展开更多
Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable ga...Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable gate array) implementation of a novel reliable real-time data transfer system based on EPA (Ethemet for plant automation) protocol and IEEE 1588 standard. This combination can provide more predictable and real-time communication between automation equipments and precise synchronization between devices. The designed EPA system has been verified on Xilinx Spartan3 XC3S1500 and it consumed 75% of the total slices. The experimental results show that the novel industrial control system achieves high synchronization precision and provides a 1.59-ps standard deviation between the master device and the slave ones. Such a real-time data transfer system is an excellent candidate for automation equipments which require precise synchronization based on Ethemet at a comparatively low price.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
基金the Ministerial Level Advanced Research Foundation(40407010305)
文摘High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by the digital circuit, after being magnified and sharpened through multistage isolated amplifiers and rising edge sharpening device, high-voltage steep delay pulses with precision less than μs level are obtained. This system has been used in our compact magnetic flux compression generator experiments in place of the traditional primaeord delay device.
文摘Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable gate array) implementation of a novel reliable real-time data transfer system based on EPA (Ethemet for plant automation) protocol and IEEE 1588 standard. This combination can provide more predictable and real-time communication between automation equipments and precise synchronization between devices. The designed EPA system has been verified on Xilinx Spartan3 XC3S1500 and it consumed 75% of the total slices. The experimental results show that the novel industrial control system achieves high synchronization precision and provides a 1.59-ps standard deviation between the master device and the slave ones. Such a real-time data transfer system is an excellent candidate for automation equipments which require precise synchronization based on Ethemet at a comparatively low price.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.