In this paper,we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment.It is known that Choi et al.[J Differ Equ,2021,302:807-853]studied the persistence or ext...In this paper,we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment.It is known that Choi et al.[J Differ Equ,2021,302:807-853]studied the persistence or extinction of the prey and of the predator separately in various moving frames.In particular,they achieved a complete picture in the local diffusion case.However,the question of the persistence of the prey and of the predator in some intermediate moving frames in the nonlocal diffusion case was left open in Choi et al.'s paper.By using some a prior estimates,the Arzelà-Ascoli theorem and a diagonal extraction process,we can extend and improve the main results of Choi et al.to achieve a complete picture in the nonlocal diffusion case.展开更多
This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coeffici...This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.展开更多
An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this pa...An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this paper,the stochastic dynamics of the nonlinear predator-prey system considering random environmental mutations is investigated, and a feedback control strategy is proposed to reshape the response of the predator-prey system against random abrupt environmental mutations. A delayed Markov jump system(MJS) is established to model such a predator-prey system. A novel first integral is constructed which leads to better approximation solutions of the ecosystem. Then, by applying the stochastic averaging method based on this novel first integral, the stochastic response of the predator-prey system is investigated, and an analytical feedback control is designed to reshape the response of the ecosystem from the disturbed state back to the undisturbed one.Numerical simulations finally illustrate the accuracy and effectiveness of the proposed procedure.展开更多
The predator-prey model for three species in which the right-hand sides are nonperiodic functions in time were considered, It's proved that the model is persistent under appropriate conditions.
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by...In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.展开更多
The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. T...The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. The permanence of the system is also considered. The results partially improve and extend some known criteria.展开更多
A kind of predator-prey system of Holling typeⅡand interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of pr...A kind of predator-prey system of Holling typeⅡand interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.展开更多
A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper.By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of p...A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper.By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of positive periodic solution is studied.A set of easily verifiable sufficient conditions are obtained.展开更多
A system of retarded functional differential equations is proposed as a predator-prey model with stage structure in the prey.The invariance of non-negativity,nature of boundary equilibria and global stability are anal...A system of retarded functional differential equations is proposed as a predator-prey model with stage structure in the prey.The invariance of non-negativity,nature of boundary equilibria and global stability are analyzed.It is shown that in this model the time delay can make a stable equilibrium become unstable and even a switching of stabilities.展开更多
This note investigates the existence of periodic solutions for semi-ratio-dependent predator-prey models with functional response. New sharp criteria without any other nontrivial assumptions are presented by the invar...This note investigates the existence of periodic solutions for semi-ratio-dependent predator-prey models with functional response. New sharp criteria without any other nontrivial assumptions are presented by the invariance property of homotopy and analysis technique, which improve and extend many previous work. Some interesting numerical examples are given to illustrate our results.展开更多
The present paper is concerned with the Holling type IV predator-prey system with diffusion.By analyzing the characteristic equation associated with the positive equilibrium,the conditions for the asymptotic stability...The present paper is concerned with the Holling type IV predator-prey system with diffusion.By analyzing the characteristic equation associated with the positive equilibrium,the conditions for the asymptotic stability of the positive equilibrium is obtained.For the system without delay,it has been shown that the positive equilibrium is stable in certain region of the parameter plane.However,the introducing of the delay can lead to the loss of the stability.We find that in the region where the positive equilibrium is stable for the system without delay,there exists a critical value of the delay and the positive equilibrium is stable when the delay is less than this critical value and becomes unstable when the delay is greater than it.展开更多
A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive c...A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive continuous T-periodic functions, gi(t,xi) (i = 1,2) and h(t,y) are continuous and T-periodic with respect to t and h(t,y) > 0 for y>0,t, y∈R,pi(x)(i=1,2) are continuous and monotonously increasing functions, and Pi(xi)>0 for xi>0.展开更多
A kind of three species delayed predator-prey system with reserve area for prey and in the presence of toxicity is proposed in this paper. Local stability of the coexistence equilibrium of the system and the existence...A kind of three species delayed predator-prey system with reserve area for prey and in the presence of toxicity is proposed in this paper. Local stability of the coexistence equilibrium of the system and the existence of a Hopf bifurcation is established by choosing the time delay as the bifurcation parameter. Explicit formulas to determine the direction and stability of the Hopf bifurcation are obtained by means of the normal form theory and the center manifold theorem. Finally, we give a numerical example to illustrate the obtained results.展开更多
In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the ...In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the given positive initial value. Secondly, sufficient conditions for system extinction and persistence are obtained through some assumptions. Then, the sufficient conditions of stochastically persistence are obtained by combining stochastic analysis technique and M-matrix analysis. In addition, under appropriate conditions, we demonstrate the existence of a unique stationary distribution for a system without Lévy jumps. Finally, the empirical and Mlistein methods are used to verify the theoretical results through numerical simulation.展开更多
In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation a...In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.展开更多
The purpose of this paper is to investigate positive steady states of a diffusive predator-prey system with predator cannibalism under homogeneous Neumann boundary conditions. With the help of implicit function theore...The purpose of this paper is to investigate positive steady states of a diffusive predator-prey system with predator cannibalism under homogeneous Neumann boundary conditions. With the help of implicit function theorem and energy integral method, nonexistence of non-constant positive steady states of the system is obtained, whereas coexistence of non-constant positive steady states is derived from topological degree theory. The results indicate that if dispersal rate of the predator or prey is sufficiently large, there is no nonconstant positive steady states. However, under some appropriate hypotheses, if the dispersal rate of the predator is larger than some positive constant, for certain ranges of dispersal rates of the prey, there exists at least one non-constant positive steady state.展开更多
In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifu...In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable.展开更多
In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive con...In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.展开更多
This paper is concerned with optimal harvesting problems for a system consisting oftwo populations with age-structure and interaction of predator-prey. Existence and uniquenessof non-negative solutions to the system a...This paper is concerned with optimal harvesting problems for a system consisting oftwo populations with age-structure and interaction of predator-prey. Existence and uniquenessof non-negative solutions to the system and the continuous dependence of solutions on controlvariables are investigated. Existence of optimal policy is discussed, optimality conditions arederived by means of normal cone and adjoint system techniques.展开更多
In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of lim...In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of limit cycles, transcritical and Hopf bifurcations. Mathematical theory derivation mainly focuses on the existence and stability of equilibrium point as well as threshold conditions for transcritical and Hopf bifurcation, which can in turn provide a theoretical support for numerical simulation. Numerical analysis indicates that theoretical derivation results are correct and feasible. In addition, it is successful to show that the dynamical behavior of this predator-prey system mainly depends on some critical parameters and mathematical relationships. All these results are expected to be meaningful in the study of the dynamic complexity of predatory ecosystem.展开更多
基金supported by the National Natural Science Foundation of China(12171039,12271044)。
文摘In this paper,we mainly study the propagation properties of a nonlocal dispersal predator-prey system in a shifting environment.It is known that Choi et al.[J Differ Equ,2021,302:807-853]studied the persistence or extinction of the prey and of the predator separately in various moving frames.In particular,they achieved a complete picture in the local diffusion case.However,the question of the persistence of the prey and of the predator in some intermediate moving frames in the nonlocal diffusion case was left open in Choi et al.'s paper.By using some a prior estimates,the Arzelà-Ascoli theorem and a diagonal extraction process,we can extend and improve the main results of Choi et al.to achieve a complete picture in the nonlocal diffusion case.
基金supported by the National Natural Science Foundation of China(11271120,11426099)the Project of Hunan Natural Science Foundation of China(13JJ3085)
文摘This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.
基金the National Natural Science Foundation of China(Nos.11772293 and12072312)Zhejiang Science and Technology Project(No.2019C03129)。
文摘An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this paper,the stochastic dynamics of the nonlinear predator-prey system considering random environmental mutations is investigated, and a feedback control strategy is proposed to reshape the response of the predator-prey system against random abrupt environmental mutations. A delayed Markov jump system(MJS) is established to model such a predator-prey system. A novel first integral is constructed which leads to better approximation solutions of the ecosystem. Then, by applying the stochastic averaging method based on this novel first integral, the stochastic response of the predator-prey system is investigated, and an analytical feedback control is designed to reshape the response of the ecosystem from the disturbed state back to the undisturbed one.Numerical simulations finally illustrate the accuracy and effectiveness of the proposed procedure.
文摘The predator-prey model for three species in which the right-hand sides are nonperiodic functions in time were considered, It's proved that the model is persistent under appropriate conditions.
基金supported by the National Natural Science Foundation of China(11361053,11201204,11471148,11471330,145RJZA112)
文摘In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.
文摘The existence of positive periodic solution of a generalized semi-ratio-dependent predator-prey system with time delay and impulse is studied by using the continuation theorem based on the coincidence degree theory. The permanence of the system is also considered. The results partially improve and extend some known criteria.
基金Foundation item: Supported by the National Natural Science Foundation of China(10771179) Supported by the Natural Science Foundation of the Education Department Henan Province(2007110028)
文摘A kind of predator-prey system of Holling typeⅡand interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.
文摘A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper.By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of positive periodic solution is studied.A set of easily verifiable sufficient conditions are obtained.
基金Supported by the National Natural Science Foundation of China(1 0 1 71 1 0 6 ) and Natural Science Foun-dation of Henan Province(0 2 1 1 0 1 0 4 0 0)
文摘A system of retarded functional differential equations is proposed as a predator-prey model with stage structure in the prey.The invariance of non-negativity,nature of boundary equilibria and global stability are analyzed.It is shown that in this model the time delay can make a stable equilibrium become unstable and even a switching of stabilities.
基金Supported by NSFC(10801056, 10971057)NSF of Guangdong Province (8451063101000730)Doctoral Program of Higher Education of China(20094407110001)
文摘This note investigates the existence of periodic solutions for semi-ratio-dependent predator-prey models with functional response. New sharp criteria without any other nontrivial assumptions are presented by the invariance property of homotopy and analysis technique, which improve and extend many previous work. Some interesting numerical examples are given to illustrate our results.
基金Shanghai Committee of Science and Technology,China (No.11ZR1400200 )Fundamental Research Funds for the Central Universities,China (No.2011D10903)
文摘The present paper is concerned with the Holling type IV predator-prey system with diffusion.By analyzing the characteristic equation associated with the positive equilibrium,the conditions for the asymptotic stability of the positive equilibrium is obtained.For the system without delay,it has been shown that the positive equilibrium is stable in certain region of the parameter plane.However,the introducing of the delay can lead to the loss of the stability.We find that in the region where the positive equilibrium is stable for the system without delay,there exists a critical value of the delay and the positive equilibrium is stable when the delay is less than this critical value and becomes unstable when the delay is greater than it.
基金The project is supported by Youth Project Foundation of Hubei Education Department (2002B00002)the Scientific Research Foundation of Hubei Normal University(2003).
文摘A set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for delayed generalized predator-prey dispersion systemwhere ai(t),bi(t) and Di(t)(i = 1, 2) axe positive continuous T-periodic functions, gi(t,xi) (i = 1,2) and h(t,y) are continuous and T-periodic with respect to t and h(t,y) > 0 for y>0,t, y∈R,pi(x)(i=1,2) are continuous and monotonously increasing functions, and Pi(xi)>0 for xi>0.
基金The NSF(1608085QF151 and 1608085QF145)of Anhui Province
文摘A kind of three species delayed predator-prey system with reserve area for prey and in the presence of toxicity is proposed in this paper. Local stability of the coexistence equilibrium of the system and the existence of a Hopf bifurcation is established by choosing the time delay as the bifurcation parameter. Explicit formulas to determine the direction and stability of the Hopf bifurcation are obtained by means of the normal form theory and the center manifold theorem. Finally, we give a numerical example to illustrate the obtained results.
文摘In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the given positive initial value. Secondly, sufficient conditions for system extinction and persistence are obtained through some assumptions. Then, the sufficient conditions of stochastically persistence are obtained by combining stochastic analysis technique and M-matrix analysis. In addition, under appropriate conditions, we demonstrate the existence of a unique stationary distribution for a system without Lévy jumps. Finally, the empirical and Mlistein methods are used to verify the theoretical results through numerical simulation.
文摘In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.
基金partially supported by the National Natural Science Foundation of China(11371286)
文摘The purpose of this paper is to investigate positive steady states of a diffusive predator-prey system with predator cannibalism under homogeneous Neumann boundary conditions. With the help of implicit function theorem and energy integral method, nonexistence of non-constant positive steady states of the system is obtained, whereas coexistence of non-constant positive steady states is derived from topological degree theory. The results indicate that if dispersal rate of the predator or prey is sufficiently large, there is no nonconstant positive steady states. However, under some appropriate hypotheses, if the dispersal rate of the predator is larger than some positive constant, for certain ranges of dispersal rates of the prey, there exists at least one non-constant positive steady state.
文摘In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable.
文摘In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings.
基金Supported by the National Natural Science Foundation of China (10771048)the Research Project for Post-Graduates Creation of Zhejiang Province (YK2008054)
文摘This paper is concerned with optimal harvesting problems for a system consisting oftwo populations with age-structure and interaction of predator-prey. Existence and uniquenessof non-negative solutions to the system and the continuous dependence of solutions on controlvariables are investigated. Existence of optimal policy is discussed, optimality conditions arederived by means of normal cone and adjoint system techniques.
文摘In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of limit cycles, transcritical and Hopf bifurcations. Mathematical theory derivation mainly focuses on the existence and stability of equilibrium point as well as threshold conditions for transcritical and Hopf bifurcation, which can in turn provide a theoretical support for numerical simulation. Numerical analysis indicates that theoretical derivation results are correct and feasible. In addition, it is successful to show that the dynamical behavior of this predator-prey system mainly depends on some critical parameters and mathematical relationships. All these results are expected to be meaningful in the study of the dynamic complexity of predatory ecosystem.