Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast s...Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.展开更多
Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seas...Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,th...The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,the attribution of this particular event can help us to understand the cause of super El Niño–Southern Oscillation events and how to forecast them skillfully.The present study applies attribute methods based on a deep learning model to study the key factors related to the formation of this event.A deep learning model is trained using historical simulations from 21 CMIP6 models to predict the Niño-3.4 index.The integrated gradient method is then used to identify the key signals in the North Pacific that determine the evolution of the Niño-3.4 index.These crucial signals are then masked in the initial conditions to verify their roles in the prediction.In addition to confirming the key signals inducing the super El Niño event revealed in previous attribution studies,we identify the combined contribution of the tropical North Atlantic and the South Pacific oceans to the evolution and intensity of this event,emphasizing the crucial role of the interactions among them and the North Pacific.This approach is also applied to other El Niño events,revealing several new precursor signals.This study suggests that the deep learning method is useful in attributing the key factors inducing extreme tropical climate events.展开更多
Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictabili...Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictability of OHC using state-of-the-art climate models is invaluable for improving and advancing climate forecasts.Recently developed retrospective forecast experiments,based on a Community Earth System Model ensemble prediction system,offer a great opportunity to comprehensively explore OHC predictability.Our results indicate that the skill of actual OHC predictions varies across different oceans and diminishes as the lead time of prediction extends.The spatial distribution of the actual prediction skill closely resembles the corresponding persistence skill,indicating that the persistence of OHC serves as the primary predictive signal for its predictability.The decline in actual prediction skill is more pronounced in the Indian and Atlantic oceans than in the Pacific Ocean,particularly within tropical regions.Additionally,notable seasonal variations in the actual prediction skills across different oceans align well with the phase-locking features of OHC variability.The potential predictability of OHC generally surpasses the actual prediction skill at all lead times,highlighting significant room for improvement in current OHC predictions,especially for the North Indian Ocean and the Atlantic Ocean.Achieving such improvements necessitates a collaborative effort to enhance the quality of ocean observations,develop effective data assimilation methods,and reduce model bias.展开更多
Based on the observation data of automatic stations and sounding data,the circulation characteristics and physical quantities of a large-scale short-duration heavy precipitation process in Nanchang City on July 7,2020...Based on the observation data of automatic stations and sounding data,the circulation characteristics and physical quantities of a large-scale short-duration heavy precipitation process in Nanchang City on July 7,2020 were diagnosed and analyzed,and the ability of several numerical forecasting products to predict this process was tested.The results show that the short-duration heavy precipitation process was triggered in the process of the subtropical high changing from lifting to the north to retreating to the south under the weather background of the confrontation between the northerly flow behind the trough and the strong southwest warm and wet flow on the north side of the subtropical high.The strong southwest warm and wet flow provided abundant water vapor,and the southern pressing of the lower energy front and the invasion of the cold air near the surface layer provided unstable energy and dynamic conditions for the heavy precipitation.The changing trend of the subtropical high from lifting to the north to retreating to the south during 08:00 to 20:00 on July 7 was not predicted by numerical forecast,and there was a large deviation in the forecast of the time and intensity of the southern pressing of the northerly flow behind the trough,so the guidance of numerical forecast for heavy precipitation was not strong,which was not conducive to the prediction of the short-duration heavy precipitation.It was predicted that the subtropical high would move slightly to the south on July 6 compared with the previous day,and the forecast adjustment of the high-level weather system can be used as a sign of the forecast change,which needs to be paid certain attention in the daily forecast.展开更多
This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in t...This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather and climate.Specifically,it covers(a)advances in methods to study weather and climate predictability dynamics,especially those in nonlinear optimal perturbation methods associated with initial errors and model errors and their applications to ensemble forecasting and target observations,(b)new data assimilation algorithms for initialization of predictions and novel assimilation approaches to neutralize the combined effects of initial and model errors for weather and climate,(c)applications of new statistical approaches to climate predictions,and(d)studies on meso-to small-scale weather system predictability dynamics.Some of the major frontiers and challenges remaining in predictability studies are addressed in this context.展开更多
In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble fo...In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble forecasting, the high-resolution mesoscale numerical forecast model WRF was used to investigate the effect of initial errors on a warmsector rainstorm and a frontal rainstorm under the same circulation in south China, respectively. We analyzed the sensitivity of forecast errors to the initial errors and their evolution characteristics for the warm-sector and the frontal rainstorm. Additionally, the difference of the predictability was compared via adjusting the initial values of the GOOD member and the BAD member. Compared with the frontal rainstorm, the warm-sector rainstorm was more sensitive to initial error, which increased faster in the warm-sector. Furthermore, the magnitude of error in the warm-sector rainstorm was obviously larger than that of the frontal rainstorm, while the spatial scale of the error was smaller. Similarly, both types of the rainstorm were limited by practical predictability and inherent predictability, while the nonlinear increase characteristics occurred to be more distinct in the warm-sector rainstorm, resulting in the lower inherent predictability.The comparison between the warm-sector rainstorm and the frontal rainstorm revealed that the forecast field was closer to the real situation derived from more accurate initial errors, but only the increase rate in the frontal rainstorm was restrained evidently.展开更多
The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using ...The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test sample.Using ensemble machine learning techniques,we create a virtual environment that prevents researchers from peeking into the intuition in advance when performing out-of-sample prediction simulations.We apply this approach to robust monitoring,exploiting a dynamic shrink-age effect by switching between a proposed forecast and a benchmark.Considering stock return forecasting as an example,we show that the resulting robust monitoring forecast improves the average performance of the proposed forecast by 15%(in terms of mean-squared-error)and reduces the variance of its relative performance by 46%while avoiding the out-of-sample R^(2)-hacking problem.Our approach,as a final touch,can further enhance the performance and stability of forecasts from any models and methods.展开更多
This article addresses the predictability of Bitcoin’s price by examining relationships between Bitcoin and financial and emotional variables such as the Fear and Greed Index(FGI),the American Interest Rate(FED),and ...This article addresses the predictability of Bitcoin’s price by examining relationships between Bitcoin and financial and emotional variables such as the Fear and Greed Index(FGI),the American Interest Rate(FED),and the Stock Market Index(NASDAQ).Through the use of statistical techniques such as the Johansen Cointegration Test and Granger Causality,as well as forecasting models,the study reveals that,despite the notorious volatility of the cryptocurrency market,it is possible to identify consistent behavioral patterns that can be successfully used to predict Bitcoin returns.The approach that combines VAR models and neural networks stands out as an effective tool to assist investors and analysts in making informed decisions in an ever-changing market environment.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.42192562 and 42030605)。
文摘Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802).
文摘Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
基金supported by the National Key R&D Program of China(2019YFA0606703)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202025).
文摘The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,the attribution of this particular event can help us to understand the cause of super El Niño–Southern Oscillation events and how to forecast them skillfully.The present study applies attribute methods based on a deep learning model to study the key factors related to the formation of this event.A deep learning model is trained using historical simulations from 21 CMIP6 models to predict the Niño-3.4 index.The integrated gradient method is then used to identify the key signals in the North Pacific that determine the evolution of the Niño-3.4 index.These crucial signals are then masked in the initial conditions to verify their roles in the prediction.In addition to confirming the key signals inducing the super El Niño event revealed in previous attribution studies,we identify the combined contribution of the tropical North Atlantic and the South Pacific oceans to the evolution and intensity of this event,emphasizing the crucial role of the interactions among them and the North Pacific.This approach is also applied to other El Niño events,revealing several new precursor signals.This study suggests that the deep learning method is useful in attributing the key factors inducing extreme tropical climate events.
基金The National Key R&D Program of China under contract No.2020YFA0608803the Scientific Research Fund of the Second Institute of Oceanography+3 种基金Ministry of Natural Resources under contract No.QNYC2101the National Natural Science Foundation of China under contract No.42105052the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP310the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021001。
文摘Upper ocean heat content(OHC)has been widely recognized as a crucial precursor to high-impact climate variability,especially for that being indispensable to the long-term memory of the ocean.Assessing the predictability of OHC using state-of-the-art climate models is invaluable for improving and advancing climate forecasts.Recently developed retrospective forecast experiments,based on a Community Earth System Model ensemble prediction system,offer a great opportunity to comprehensively explore OHC predictability.Our results indicate that the skill of actual OHC predictions varies across different oceans and diminishes as the lead time of prediction extends.The spatial distribution of the actual prediction skill closely resembles the corresponding persistence skill,indicating that the persistence of OHC serves as the primary predictive signal for its predictability.The decline in actual prediction skill is more pronounced in the Indian and Atlantic oceans than in the Pacific Ocean,particularly within tropical regions.Additionally,notable seasonal variations in the actual prediction skills across different oceans align well with the phase-locking features of OHC variability.The potential predictability of OHC generally surpasses the actual prediction skill at all lead times,highlighting significant room for improvement in current OHC predictions,especially for the North Indian Ocean and the Atlantic Ocean.Achieving such improvements necessitates a collaborative effort to enhance the quality of ocean observations,develop effective data assimilation methods,and reduce model bias.
基金Supported by the"Jiebangguashuai"Project of Key Research and Development Plan of Jiangxi Province in 2022(20223BBG71079)Special Project for Forecasters of Jiangxi Meteorological Bureau(JX2021Y04).
文摘Based on the observation data of automatic stations and sounding data,the circulation characteristics and physical quantities of a large-scale short-duration heavy precipitation process in Nanchang City on July 7,2020 were diagnosed and analyzed,and the ability of several numerical forecasting products to predict this process was tested.The results show that the short-duration heavy precipitation process was triggered in the process of the subtropical high changing from lifting to the north to retreating to the south under the weather background of the confrontation between the northerly flow behind the trough and the strong southwest warm and wet flow on the north side of the subtropical high.The strong southwest warm and wet flow provided abundant water vapor,and the southern pressing of the lower energy front and the invasion of the cold air near the surface layer provided unstable energy and dynamic conditions for the heavy precipitation.The changing trend of the subtropical high from lifting to the north to retreating to the south during 08:00 to 20:00 on July 7 was not predicted by numerical forecast,and there was a large deviation in the forecast of the time and intensity of the southern pressing of the northerly flow behind the trough,so the guidance of numerical forecast for heavy precipitation was not strong,which was not conducive to the prediction of the short-duration heavy precipitation.It was predicted that the subtropical high would move slightly to the south on July 6 compared with the previous day,and the forecast adjustment of the high-level weather system can be used as a sign of the forecast change,which needs to be paid certain attention in the daily forecast.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42105061 and 42030604).
文摘This article summarizes the progress made in predictability studies of weather and climate in recent years in China,with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather and climate.Specifically,it covers(a)advances in methods to study weather and climate predictability dynamics,especially those in nonlinear optimal perturbation methods associated with initial errors and model errors and their applications to ensemble forecasting and target observations,(b)new data assimilation algorithms for initialization of predictions and novel assimilation approaches to neutralize the combined effects of initial and model errors for weather and climate,(c)applications of new statistical approaches to climate predictions,and(d)studies on meso-to small-scale weather system predictability dynamics.Some of the major frontiers and challenges remaining in predictability studies are addressed in this context.
基金National Key Research and Development Program of China(2017YFC1502000)。
文摘In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble forecasting, the high-resolution mesoscale numerical forecast model WRF was used to investigate the effect of initial errors on a warmsector rainstorm and a frontal rainstorm under the same circulation in south China, respectively. We analyzed the sensitivity of forecast errors to the initial errors and their evolution characteristics for the warm-sector and the frontal rainstorm. Additionally, the difference of the predictability was compared via adjusting the initial values of the GOOD member and the BAD member. Compared with the frontal rainstorm, the warm-sector rainstorm was more sensitive to initial error, which increased faster in the warm-sector. Furthermore, the magnitude of error in the warm-sector rainstorm was obviously larger than that of the frontal rainstorm, while the spatial scale of the error was smaller. Similarly, both types of the rainstorm were limited by practical predictability and inherent predictability, while the nonlinear increase characteristics occurred to be more distinct in the warm-sector rainstorm, resulting in the lower inherent predictability.The comparison between the warm-sector rainstorm and the frontal rainstorm revealed that the forecast field was closer to the real situation derived from more accurate initial errors, but only the increase rate in the frontal rainstorm was restrained evidently.
文摘The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test sample.Using ensemble machine learning techniques,we create a virtual environment that prevents researchers from peeking into the intuition in advance when performing out-of-sample prediction simulations.We apply this approach to robust monitoring,exploiting a dynamic shrink-age effect by switching between a proposed forecast and a benchmark.Considering stock return forecasting as an example,we show that the resulting robust monitoring forecast improves the average performance of the proposed forecast by 15%(in terms of mean-squared-error)and reduces the variance of its relative performance by 46%while avoiding the out-of-sample R^(2)-hacking problem.Our approach,as a final touch,can further enhance the performance and stability of forecasts from any models and methods.
文摘This article addresses the predictability of Bitcoin’s price by examining relationships between Bitcoin and financial and emotional variables such as the Fear and Greed Index(FGI),the American Interest Rate(FED),and the Stock Market Index(NASDAQ).Through the use of statistical techniques such as the Johansen Cointegration Test and Granger Causality,as well as forecasting models,the study reveals that,despite the notorious volatility of the cryptocurrency market,it is possible to identify consistent behavioral patterns that can be successfully used to predict Bitcoin returns.The approach that combines VAR models and neural networks stands out as an effective tool to assist investors and analysts in making informed decisions in an ever-changing market environment.
基金funded by the National Key Research and Development Program of China[grant number 2022YFE0106800]the National Natural Science Foundation of China[grant number 41730964]the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311021001].