Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d...Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
A new technique for predicting species' geographic distribution is described.The approach involves 3 steps:①setting up geographic base data;②collecting and georeferencing distributional points;③modeling ecologi...A new technique for predicting species' geographic distribution is described.The approach involves 3 steps:①setting up geographic base data;②collecting and georeferencing distributional points;③modeling ecological niches using the biodiversity species workshop implementation of the genetic algorithm for rule set prediction (GARP).To illustrate these procedures,an example based on the Brown Eared Pheasant (Crossoptilon mantchuricum) is developed.This technique constitutes a useful tool for assessing geographic distribution for questions of ecology,biogeography,systematics,and conservation biology.展开更多
To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed ...To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.展开更多
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-conn...In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships amon...The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.展开更多
Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines...Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines,which bring great impacts to industrial development and human society.This paper investigates and discusses the advantages control strategies for electric machines,including the field oriented control(FOC),direct torque control(DTC),finite control set model predictive control(FCS-MPC),sensorless control,and fault tolerant control(FTC).The corresponding control principles,control targets,fundamental approaches,advanced approaches,methodologies,merits and shortcomings are revealed and analyzed in detail.展开更多
文摘Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘A new technique for predicting species' geographic distribution is described.The approach involves 3 steps:①setting up geographic base data;②collecting and georeferencing distributional points;③modeling ecological niches using the biodiversity species workshop implementation of the genetic algorithm for rule set prediction (GARP).To illustrate these procedures,an example based on the Brown Eared Pheasant (Crossoptilon mantchuricum) is developed.This technique constitutes a useful tool for assessing geographic distribution for questions of ecology,biogeography,systematics,and conservation biology.
基金This work was supported in part by the Hunan Provincial Key Laboratory of Power Electronics Equipment and Grid under Grant 2018TP1001in part by the National Natural Science Foundation of China under Grant 61903382,51807206,61933011+1 种基金in part by the Major Project of Changzhutan Self-Dependent Innovation Demonstration Area under Grant 2018XK2002in part by the Natural Science Foundation of Hunan Province,China under Grant 2020JJ5722 and 2020JJ5753.
文摘To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method.
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000 V).
文摘In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.
文摘The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.
基金Supported by the general program of National Natural Science Foundation of China under Grant 51677159a grant(Project No.CityU 21201216)from the Research Grants Council of HKSAR,China.
文摘Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines,which bring great impacts to industrial development and human society.This paper investigates and discusses the advantages control strategies for electric machines,including the field oriented control(FOC),direct torque control(DTC),finite control set model predictive control(FCS-MPC),sensorless control,and fault tolerant control(FTC).The corresponding control principles,control targets,fundamental approaches,advanced approaches,methodologies,merits and shortcomings are revealed and analyzed in detail.