BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom...Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.展开更多
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra...This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.展开更多
There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We defi...There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.展开更多
Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the develo...Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the development of Archimedes,an AI model of diabetes,in 2003.More recently,AI models have been applied to the fields of cardiology,endocrinology,and undergraduate medical education.The use of digital twins and AI thus far has focused mainly on chronic disease management,their application in the field of critical care medicine remains much less explored.In neurocritical care,current AI technology focuses on interpreting electroencephalography,monitoring intracranial pressure,and prognosticating outcomes.AI models have been developed to interpret electroencephalograms by helping to annotate the tracings,detecting seizures,and identifying brain activation in unresponsive patients.In this mini-review we describe the challenges and opportunities in building an actionable AI model pertinent to neurocritical care that can be used to educate the newer generation of clinicians and augment clinical decision making.展开更多
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d...In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.展开更多
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on...Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.展开更多
Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we s...Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we surveyed patient statistics and performed feature analysis to identify the most influential data features associated with readmissions.Classification of all-cause,30-day readmission outcomes were modeled using logistic regression,artificial neural network,and Easy Ensemble.F1 statistic,sensitivity,and positive predictive value were used to evaluate the model performance.Results:We identified 14 most influential data features(4 numeric features and 10 categorical features)and evaluated 3 machine learning models with numerous sampling methods(oversampling,undersampling,and hybrid techniques).The deep learning model offered no improvement over traditional models(logistic regression and Easy Ensemble)for predicting readmission,whereas the other two algorithms led to much smaller differences between the training and testing datasets.Conclusions:Machine learning approaches to record electronic health data offer a promising method for improving readmission prediction in patients with diabetes.But more work is needed to construct datasets with more clinical variables beyond the standard risk factors and to fine-tune and optimize machine learning models.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model an...Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.展开更多
Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfec...Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.展开更多
Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This ...Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.展开更多
Background:Accurate nestling age is valuable for studies on nesting strategies,productivity,and impacts on repro-ductive success.Most aging guides consist of descriptions and photographs that are time consuming to rea...Background:Accurate nestling age is valuable for studies on nesting strategies,productivity,and impacts on repro-ductive success.Most aging guides consist of descriptions and photographs that are time consuming to read and subjective to interpret.The Western Bluebird(Sialia mexicana)is a secondary cavity-nesting passerine that nests in coniferous and open deciduous forests.Nest box programs for cavity-nesting species have provided suitable nesting locations and opportunities for data collection on nestling growth and development.Methods:We developed models for predicting the age of Western Bluebird nestlings from morphometric meas-urements using model training and validation.These were developed for mass,tarsus,and two different culmen measurements.Results:Our models were accurate to within less than a day,and each model worked best for a specific age range.The mass and tarsus models can be used to estimate the ages of Western Bluebird nestlings 0-10 days old and were accurate to within 0.5 days for mass and 0.7 days for tarsus.The culmen models can be used to estimate ages of nest-lings 0-15 days old and were also accurate to within less than a day.The daily mean,minimum,and maximum values of each morphometric measurement are provided and can be used in the field for accurate nestling age estimations in real time.Conclusions:The model training and validation procedures used here demonstrate that this method can create aging models that are highly accurate.The methods can be applied to any passerine species provided sufficient nest-ling morphometric data are available.展开更多
The accurate prediction of fertility outcomes is an extremely interesting and challenging task in reproductive medicine. Efforts in this area focus on classic statistical models and newer technologies, including machi...The accurate prediction of fertility outcomes is an extremely interesting and challenging task in reproductive medicine. Efforts in this area focus on classic statistical models and newer technologies, including machine learning. The modeling process has three steps, namely, data preparation, model selection and data fitting, and model validation. Here, we present a review of studies on these methods of fertility prediction. Various databases were searched using relevant keywords. Original studies with full-text available on this topic were included for review. Earlier studies explored prediction models for spontaneous pregnancy prognosis, reproductive outcomes after intrauterine insemination and in vitro fertilization, and implantation potential based on embryo morphology and morphokinetic data. Future directions for predictive modeling in reproductive medicine include solving problems presented by big data, identifying novel informative features, balancing predictive power and result interpretability, and validating models with gold-standard study designs.展开更多
One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn O...One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn ODs)are located in the southwest Sinai microplate,Egypt.These deposits are confined with the Um Bogma Formation(UBF)and the reserves of this region are relatively small.In this study,optical and radar data are used in a new challenge as an attempt to reach the closest controls and setting of Mn ODs.Moreover,Frequency Ratio(FR)and Logistic Regression(LogR)predictive models are applied to integrate different geospatial thematic maps,to predict new potential resource zones for increasing the ranges of mining quarries.Landsat8 OLI,Sentinel-2A Multi Spectral Instrument and Radar(Sentinel-1B)data are combined for mapping Mn ODs locations and their relationship with geological structures and the surrounding rocks.Band ratio,Principal and Independent Component Analysis techniques and four classification algorithms were implemented to the optical’VNIR and SWIR bands.Unusually,the interferometric processing steps for Sentinel-1 data were made for understanding the tectonic features in the area.The FR and LogR models are validated during fieldwork with known Mn ODs locations.Results indicate that processed images are capable of differentiation of UBF which broadly distributed in the central and southern parts of the area.Mn ODs possibly formed by thermal events that attributed to paleo-volcanic events before the rift stage.The high accuracy of LogR model(0.902)suggests that high Mn ODs potential zones are identified within the intersected fault zones near granitic units.This integration is recommended for discriminating hydrothermally Mn ODs in other arid geographic regions.展开更多
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ...Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.展开更多
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W...Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.展开更多
Background:The prevalence of schistosomiasis remains a key public health issue in China.Jiangling County in Hubei Province is a typical lake and marshland endemic area.The pattern analysis of schistosomiasis prevalenc...Background:The prevalence of schistosomiasis remains a key public health issue in China.Jiangling County in Hubei Province is a typical lake and marshland endemic area.The pattern analysis of schistosomiasis prevalence in Jiangling County is of significant importance for promoting schistosomiasis surveillance and control in the similar endemic areas.Methods:The dataset was constructed based on the annual schistosomiasis surveillance as well the socio-economic data in Jiangling County covering the years from 2009 to 2013.A village clustering method modified from the K-mean algorithm was used to identify different types of endemic villages.For these identified village clusters,a matrix-based predictive model was developed by means of exploring the one-step backward temporal correlation inference algorithm aiming to estimate the predicative correlations of schistosomiasis prevalence among different years.Field sampling of faeces from domestic animals,as an indicator of potential schistosomiasis prevalence,was carried out and the results were used to validate the results of proposed models and methods.Results:The prevalence of schistosomiasis in Jiangling County declined year by year.The total of 198 endemic villages in Jiangling County can be divided into four clusters with reference to the 5 years’occurrences of schistosomiasis in human,cattle and snail populations.For each identified village cluster,a predictive matrix was generated to characterize the relationships of schistosomiasis prevalence with the historic infection level as well as their associated impact factors.Furthermore,the results of sampling faeces from the front field agreed with the results of the identified clusters of endemic villages.Conclusion:The results of village clusters and the predictive matrix can be regard as the basis to conduct targeted measures for schistosomiasis surveillance and control.Furthermore,the proposed models and methods can be modified to investigate the schistosomiasis prevalence in other regions as well as be used for investigating other parasitic diseases.展开更多
The aim of this paper is to create and present a new archaeological predictive model via GIS,incorporating what archaeologists consider the most important criterion absent of similar past models,that of critical think...The aim of this paper is to create and present a new archaeological predictive model via GIS,incorporating what archaeologists consider the most important criterion absent of similar past models,that of critical thinking.The new model suggested in this paper is named habitation Model Trend Calculation(MTC)and is not only integrates the archaeological questions with a critical view,but it can be easily adjusted,according to the conditions or the questions concerning the archaeological community.Furthermore,it uses new topographical and geomorphological indexes such as Topographical Index(TPI),Hillslope and Landform Classification that give a new sense of the topographical and geomorphological characteristics of the examined area;therefore this model is a more powerful tool compared to older models that did not use new topographical and geomorphological indexes.The success of the created model is checked as a case study in the region of Messenia,Greece during the Mycenaean era.The region of Messenia is considered as one of the most important Mycenaean regions of Greece due to the great number and the importance of Mycenaean sites identified.For the present paper,140 habitation sites were divided into four hierarchical categories(centers,large villages,villages,and farms)based on the extent and the plurality of the tholos tombs that exist in the broader region and according to the hierarchical categorization used by the archaeologists who have studied the area.The new predictive model presented in this work can assist in solving a series of criticisms that have been expressed in the previous studies regarding such models.Additionally,in the case of Mycenaean Messenia,the model shows excellent results in relation to the habitats of the time.展开更多
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t...BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.展开更多
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
文摘Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.
基金Project supported by the National Natural Science Foundation ofChina (No. 40101014) and by the Science and technology Committee of Zhejiang Province (No. 001110445) China
文摘This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.
文摘There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.
基金Supported by the National Center for Advancing Translational Sciences,No.UL1 TR002377.
文摘Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the development of Archimedes,an AI model of diabetes,in 2003.More recently,AI models have been applied to the fields of cardiology,endocrinology,and undergraduate medical education.The use of digital twins and AI thus far has focused mainly on chronic disease management,their application in the field of critical care medicine remains much less explored.In neurocritical care,current AI technology focuses on interpreting electroencephalography,monitoring intracranial pressure,and prognosticating outcomes.AI models have been developed to interpret electroencephalograms by helping to annotate the tracings,detecting seizures,and identifying brain activation in unresponsive patients.In this mini-review we describe the challenges and opportunities in building an actionable AI model pertinent to neurocritical care that can be used to educate the newer generation of clinicians and augment clinical decision making.
文摘In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.
文摘Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.
基金supported in part by the Key Research and Development Program for Guangdong Province(No.2019B010136001)in part by Hainan Major Science and Technology Projects(No.ZDKJ2019010)+3 种基金in part by the National Key Research and Development Program of China(No.2016YFB0800803 and No.2018YFB1004005)in part by National Natural Science Foundation of China(No.81960565,No.81260139,No.81060073,No.81560275,No.61562021,No.30560161 and No.61872110)in part by Hainan Special Projects of Social Development(No.ZDYF2018103 and No.2015SF 39)in part by Hainan Association for Academic Excellence Youth Science and Technology Innovation Program(No.201515)
文摘Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we surveyed patient statistics and performed feature analysis to identify the most influential data features associated with readmissions.Classification of all-cause,30-day readmission outcomes were modeled using logistic regression,artificial neural network,and Easy Ensemble.F1 statistic,sensitivity,and positive predictive value were used to evaluate the model performance.Results:We identified 14 most influential data features(4 numeric features and 10 categorical features)and evaluated 3 machine learning models with numerous sampling methods(oversampling,undersampling,and hybrid techniques).The deep learning model offered no improvement over traditional models(logistic regression and Easy Ensemble)for predicting readmission,whereas the other two algorithms led to much smaller differences between the training and testing datasets.Conclusions:Machine learning approaches to record electronic health data offer a promising method for improving readmission prediction in patients with diabetes.But more work is needed to construct datasets with more clinical variables beyond the standard risk factors and to fine-tune and optimize machine learning models.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
基金Supported by"Academic Backbone"Project of Northeast Agricultural University(15XG26)the National High-level Talents Special Support Program of China
文摘Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.
基金Knowledge Innovation Project of CAS No.KZCX1-10-04
文摘Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.
文摘Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.
文摘Background:Accurate nestling age is valuable for studies on nesting strategies,productivity,and impacts on repro-ductive success.Most aging guides consist of descriptions and photographs that are time consuming to read and subjective to interpret.The Western Bluebird(Sialia mexicana)is a secondary cavity-nesting passerine that nests in coniferous and open deciduous forests.Nest box programs for cavity-nesting species have provided suitable nesting locations and opportunities for data collection on nestling growth and development.Methods:We developed models for predicting the age of Western Bluebird nestlings from morphometric meas-urements using model training and validation.These were developed for mass,tarsus,and two different culmen measurements.Results:Our models were accurate to within less than a day,and each model worked best for a specific age range.The mass and tarsus models can be used to estimate the ages of Western Bluebird nestlings 0-10 days old and were accurate to within 0.5 days for mass and 0.7 days for tarsus.The culmen models can be used to estimate ages of nest-lings 0-15 days old and were also accurate to within less than a day.The daily mean,minimum,and maximum values of each morphometric measurement are provided and can be used in the field for accurate nestling age estimations in real time.Conclusions:The model training and validation procedures used here demonstrate that this method can create aging models that are highly accurate.The methods can be applied to any passerine species provided sufficient nest-ling morphometric data are available.
文摘The accurate prediction of fertility outcomes is an extremely interesting and challenging task in reproductive medicine. Efforts in this area focus on classic statistical models and newer technologies, including machine learning. The modeling process has three steps, namely, data preparation, model selection and data fitting, and model validation. Here, we present a review of studies on these methods of fertility prediction. Various databases were searched using relevant keywords. Original studies with full-text available on this topic were included for review. Earlier studies explored prediction models for spontaneous pregnancy prognosis, reproductive outcomes after intrauterine insemination and in vitro fertilization, and implantation potential based on embryo morphology and morphokinetic data. Future directions for predictive modeling in reproductive medicine include solving problems presented by big data, identifying novel informative features, balancing predictive power and result interpretability, and validating models with gold-standard study designs.
文摘One of the most controversial minerals in their origin and occurrence around the world is manganese deposits.The Abu Zenima area is rated one of the most economically important places where manganese ore deposits(Mn ODs)are located in the southwest Sinai microplate,Egypt.These deposits are confined with the Um Bogma Formation(UBF)and the reserves of this region are relatively small.In this study,optical and radar data are used in a new challenge as an attempt to reach the closest controls and setting of Mn ODs.Moreover,Frequency Ratio(FR)and Logistic Regression(LogR)predictive models are applied to integrate different geospatial thematic maps,to predict new potential resource zones for increasing the ranges of mining quarries.Landsat8 OLI,Sentinel-2A Multi Spectral Instrument and Radar(Sentinel-1B)data are combined for mapping Mn ODs locations and their relationship with geological structures and the surrounding rocks.Band ratio,Principal and Independent Component Analysis techniques and four classification algorithms were implemented to the optical’VNIR and SWIR bands.Unusually,the interferometric processing steps for Sentinel-1 data were made for understanding the tectonic features in the area.The FR and LogR models are validated during fieldwork with known Mn ODs locations.Results indicate that processed images are capable of differentiation of UBF which broadly distributed in the central and southern parts of the area.Mn ODs possibly formed by thermal events that attributed to paleo-volcanic events before the rift stage.The high accuracy of LogR model(0.902)suggests that high Mn ODs potential zones are identified within the intersected fault zones near granitic units.This integration is recommended for discriminating hydrothermally Mn ODs in other arid geographic regions.
文摘Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.
基金Financial support from the National Key R&D Program of China(No.2017YFB0601805)。
文摘Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.
基金This work was supported by the National Natural Science Foundation of China(No.81101280)by the National Special Science and Technology Project for Major Infectious Diseases of China(Grant Nos.2012ZX10004-220,2016ZX10004222-004)+3 种基金the China UK Global Health Support Programme(GHSP-CS-OP101)the Forth Round of Three-Year Public Health Action Plan of Shanghai,China(No.15GWZK0101,GWIV-29)High Resolution Remote Sensing Monitoring Progect(No.10-Y30B11-9001-14/16)The open project from Key Laboratory of Parasite and Vector Biology,Ministry of Health.The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.
文摘Background:The prevalence of schistosomiasis remains a key public health issue in China.Jiangling County in Hubei Province is a typical lake and marshland endemic area.The pattern analysis of schistosomiasis prevalence in Jiangling County is of significant importance for promoting schistosomiasis surveillance and control in the similar endemic areas.Methods:The dataset was constructed based on the annual schistosomiasis surveillance as well the socio-economic data in Jiangling County covering the years from 2009 to 2013.A village clustering method modified from the K-mean algorithm was used to identify different types of endemic villages.For these identified village clusters,a matrix-based predictive model was developed by means of exploring the one-step backward temporal correlation inference algorithm aiming to estimate the predicative correlations of schistosomiasis prevalence among different years.Field sampling of faeces from domestic animals,as an indicator of potential schistosomiasis prevalence,was carried out and the results were used to validate the results of proposed models and methods.Results:The prevalence of schistosomiasis in Jiangling County declined year by year.The total of 198 endemic villages in Jiangling County can be divided into four clusters with reference to the 5 years’occurrences of schistosomiasis in human,cattle and snail populations.For each identified village cluster,a predictive matrix was generated to characterize the relationships of schistosomiasis prevalence with the historic infection level as well as their associated impact factors.Furthermore,the results of sampling faeces from the front field agreed with the results of the identified clusters of endemic villages.Conclusion:The results of village clusters and the predictive matrix can be regard as the basis to conduct targeted measures for schistosomiasis surveillance and control.Furthermore,the proposed models and methods can be modified to investigate the schistosomiasis prevalence in other regions as well as be used for investigating other parasitic diseases.
文摘The aim of this paper is to create and present a new archaeological predictive model via GIS,incorporating what archaeologists consider the most important criterion absent of similar past models,that of critical thinking.The new model suggested in this paper is named habitation Model Trend Calculation(MTC)and is not only integrates the archaeological questions with a critical view,but it can be easily adjusted,according to the conditions or the questions concerning the archaeological community.Furthermore,it uses new topographical and geomorphological indexes such as Topographical Index(TPI),Hillslope and Landform Classification that give a new sense of the topographical and geomorphological characteristics of the examined area;therefore this model is a more powerful tool compared to older models that did not use new topographical and geomorphological indexes.The success of the created model is checked as a case study in the region of Messenia,Greece during the Mycenaean era.The region of Messenia is considered as one of the most important Mycenaean regions of Greece due to the great number and the importance of Mycenaean sites identified.For the present paper,140 habitation sites were divided into four hierarchical categories(centers,large villages,villages,and farms)based on the extent and the plurality of the tholos tombs that exist in the broader region and according to the hierarchical categorization used by the archaeologists who have studied the area.The new predictive model presented in this work can assist in solving a series of criticisms that have been expressed in the previous studies regarding such models.Additionally,in the case of Mycenaean Messenia,the model shows excellent results in relation to the habitats of the time.
文摘BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.