期刊文献+
共找到1,187篇文章
< 1 2 60 >
每页显示 20 50 100
Comparative Study of Probabilistic and Least-Squares Methods for Developing Predictive Models
1
作者 Boribo Kikunda Philippe Thierry Nsabimana +2 位作者 Jules Raymond Kala Jeremie Ndikumagenge Longin Ndayisaba 《Open Journal of Applied Sciences》 2024年第7期1775-1787,共13页
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations... This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives. 展开更多
关键词 predictive models Least Squares Bayesian Estimation Methods
下载PDF
Establishment of predictive models and determinants of preoperative gastric retention in endoscopic retrograde cholangiopancreatography 被引量:2
2
作者 Ying Jia Hao-Jun Wu +3 位作者 Tang Li Jia-Bin Liu Ling Fang Zi-Ming Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2574-2582,共9页
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t... BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value. 展开更多
关键词 CHOLANGIOPANCREATOGRAPHY Gastric retention Influencing factors predictive model ENDOSCOPE
下载PDF
Improving Routine Immunization Coverage Through Optimally Designed Predictive Models
3
作者 Fareeha Sameen Abdul Momin Kazi +3 位作者 Majida Kazmi Munir A Abbasi Saad Ahmed Qazi Lampros K Stergioulas 《Computers, Materials & Continua》 SCIE EI 2022年第1期375-395,共21页
Routine immunization(RI)of children is the most effective and timely public health intervention for decreasing child mortality rates around the globe.Pakistan being a low-and-middle-income-country(LMIC)has one of the ... Routine immunization(RI)of children is the most effective and timely public health intervention for decreasing child mortality rates around the globe.Pakistan being a low-and-middle-income-country(LMIC)has one of the highest child mortality rates in the world occurring mainly due to vaccine-preventable diseases(VPDs).For improving RI coverage,a critical need is to establish potential RI defaulters at an early stage,so that appropriate interventions can be targeted towards such populationwho are identified to be at risk of missing on their scheduled vaccine uptakes.In this paper,a machine learning(ML)based predictivemodel has been proposed to predict defaulting and non-defaulting children on upcoming immunization visits and examine the effect of its underlying contributing factors.The predictivemodel uses data obtained from Paigham-e-Sehat study having immunization records of 3,113 children.The design of predictive model is based on obtaining optimal results across accuracy,specificity,and sensitivity,to ensure model outcomes remain practically relevant to the problem addressed.Further optimization of predictive model is obtained through selection of significant features and removing data bias.Nine machine learning algorithms were applied for prediction of defaulting children for the next immunization visit.The results showed that the random forest model achieves the optimal accuracy of 81.9%with 83.6%sensitivity and 80.3%specificity.The main determinants of vaccination coverage were found to be vaccine coverage at birth,parental education,and socioeconomic conditions of the defaulting group.This information can assist relevant policy makers to take proactive and effective measures for developing evidence based targeted and timely interventions for defaulting children. 展开更多
关键词 Machine learning predictive models routine immunization vaccine coverage pakistan OPTIMIZATION SMOTE
下载PDF
Predictive models for characterizing the atomization process in pyrolysis of methyl ricinoleate 被引量:1
4
作者 Xiaoning Mao Qinglong Xie +5 位作者 Ying Duan Shangzhi Yu Xiaojiang Liang Zhenyu Wu Meizhen Lu Yong Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1023-1028,共6页
Pyrolysis of methyl ricinoleate(MR)can produce undecylenic acid methyl ester and heptanal which are important chemicals.Atomization feeding favors the heat exchange in the pyrolysis process and hence increases the pro... Pyrolysis of methyl ricinoleate(MR)can produce undecylenic acid methyl ester and heptanal which are important chemicals.Atomization feeding favors the heat exchange in the pyrolysis process and hence increases the product yield.Herein,predictive models to characterize the atomization process were developed.The effect of spray distance on Sauter mean diameter(SMD)of atomized MR droplets was examined,with the optimal spray distance to be 40-50 mm.Temperature mainly affected the physical properties of feedstock,with smaller droplet size obtained at increasing temperature.In addition,pressure had significant influence on SMD and higher pressure resulted in smaller atomized droplets.Then,a model for SMD prediction,combining temperature,pressure,spray distance,and structural parameters of nozzle,was developed through dimensionless analysis.The results showed that SMD was a power function of Reynolds number(Re),Ohnesorge number(Oh),and the ratio of spray distance to diameter of swirl chamber in the nozzle(H/dsc),with the exponents of-1.6618,-1.3205 and 0.1038,respectively.The experimental measured SMD was in good agreement with the calculated values,with the error within±15%.Moreover,the droplet size distribution was studied by establishing the relationship between the standard deviation of droplet size and SMD.This study could provide reference to the regulation and optimization of the atomization process in MR pyrolysis. 展开更多
关键词 ATOMIZATION Methyl ricinoleate pyrolysis predictive model Sauter mean diameter(SMD) Spray distance
下载PDF
Analysis of influencing factors and the construction of predictive models for postpartum depression in older pregnant women 被引量:2
5
作者 Lei Chen Yun Shi 《World Journal of Psychiatry》 SCIE 2023年第12期1079-1086,共8页
BACKGROUND Changes in China's fertility policy have led to a significant increase in older pregnant women.At present,there is a lack of analysis of influencing factors and research on predictive models for postpar... BACKGROUND Changes in China's fertility policy have led to a significant increase in older pregnant women.At present,there is a lack of analysis of influencing factors and research on predictive models for postpartum depression(PPD)in older pregnant women.AIM To analysis the influencing factors and the construction of predictive models for PPD in older pregnant women.METHODS By adopting a cross-sectional survey research design,239 older pregnant women(≥35 years old)who underwent obstetric examinations and gave birth at Suzhou Ninth People's Hospital from February 2022 to July 2023 were selected as the research subjects.When postpartum women of advanced maternal age came to the hospital for follow-up 42 d after birth,the Edinburgh PPD Scale(EPDS)was used to assess the presence of PPD symptoms.The women were divided into a PPD group and a no-PPD group.Two sets of data were collected for analysis,and a prediction model was constructed.The performance of the predictive model was evaluated using receiver operating characteristic(ROC)analysis and the Hosmer-Lemeshow goodness-of-fit test.RESULTS On the 42nd day after delivery,51 of 239 older pregnant women were evaluated with the EPDS scale and found to have depressive symptoms.The incidence rate was 21.34%(51/239).There were statistically significant differences between the PPD group and the no-PPD group in terms of education level(P=0.004),family relationships(P=0.001),pregnancy complications(P=0.019),and mother–infant separation after birth(P=0.002).Multivariate logistic regression analysis showed that a high school education and below,poor family relationships,pregnancy complications,and the separation of the mother and baby after birth were influencing factors for PPD in older pregnant women(P<0.05).Based on the influencing factors,the following model equation was developed:Logit(P)=0.729×education level+0.942×family relationship+1.137×pregnancy complications+1.285×separation of the mother and infant after birth-6.671.The area under the ROC curve of this prediction model was 0.873(95%CI:0.821-0.924),the sensitivity was 0.871,and the specificity was 0.815.The deviation between the value predicted by the model and the actual value through the Hosmer-Lemeshow goodness-of-fit test was not statistically significant(χ^(2)=2.749,P=0.638),indicating that the model did not show an overfitting phenomenon.CONCLUSION The risk of PPD among older pregnant women is influenced by educational level,family relationships,pregnancy complications,and the separation of the mother and baby after birth.A prediction model based on these factors can effectively predict the risk of PPD in older pregnant women. 展开更多
关键词 Older pregnant women Postpartum depression Influencing factors Prediction model
下载PDF
Clinical value of predictive models based on liver stiffness measurement in predicting liver reserve function of compensated chronic liver disease 被引量:1
6
作者 Rui-Min Lai Miao-Miao Wang +2 位作者 Xiao-Yu Lin Qi Zheng Jing Chen 《World Journal of Gastroenterology》 SCIE CAS 2022年第42期6045-6055,共11页
BACKGROUND Assessment of liver reserve function(LRF)is essential for predicting the prognosis of patients with chronic liver disease(CLD)and determines the extent of liver resection in patients with hepatocellular car... BACKGROUND Assessment of liver reserve function(LRF)is essential for predicting the prognosis of patients with chronic liver disease(CLD)and determines the extent of liver resection in patients with hepatocellular carcinoma.AIM To establish noninvasive models for LRF assessment based on liver stiffness measurement(LSM)and to evaluate their clinical performance.METHODS A total of 360 patients with compensated CLD were retrospectively analyzed as the training cohort.The new predictive models were established through logistic regression analysis and were validated internally in a prospective cohort(132 patients).RESULTS Our study defined indocyanine green retention rate at 15 min(ICGR15)≥10%as mildly impaired LRF and ICGR15≥20%as severely impaired LRF.We constructed predictive models of LRF,named the mLPaM and sLPaM,which involved only LSM,prothrombin time international normalized ratio to albumin ratio(PTAR),age and model for end-stage liver disease(MELD).The area under the curve of the mLPaM model(0.855,0.872,respectively)and sLPaM model(0.869,0.876,respectively)were higher than that of the methods for MELD,albumin bilirubin grade and PTAR in the two cohorts,and their sensitivity and negative predictive value were the highest among these methods in the training cohort.In addition,the new models showed good sensitivity and accuracy for the diagnosis of LRF impairment in the validation cohort.CONCLUSION The new models had a good predictive performance for LRF and could replace the indocyanine green(ICG)clearance test,especially in patients who are unable to undergo ICG testing. 展开更多
关键词 Liver stiffness measurement Chronic liver disease Liver reserve function Indocyanine green clearance test predictive model
下载PDF
Systematic review and critical appraisal of predictive models for diabetic peripheral neuropathy:Existing challenges and proposed enhancements
7
作者 Chao-Fan Sun Yu-Han Lin +3 位作者 Guo-Xing Ling Hui-Juan Gao Xing-Zhong Feng Chun-Quan Sun 《World Journal of Diabetes》 2025年第4期270-283,共14页
BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive system... BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive systematic review and rigorous evaluation of prediction models for DPN.METHODS A meticulous search was conducted in PubMed,EMBASE,Cochrane,CNKI,Wang Fang DATA,and VIP Database to identify studies published until October 2023.The included and excluded criteria were applied by the researchers to screen the literature.Two investigators independently extracted data and assessed the quality using a data extraction form and a bias risk assessment tool.Disagreements were resolved through consultation with a third investigator.Data from the included studies were extracted utilizing the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.Additionally,the bias risk and applicability of the models were evaluated by the Prediction Model Risk of Bias Assessment Tool.RESULTS The systematic review included 14 studies with a total of 26 models.The area under the receiver operating characteristic curve of the 26 models was 0.629-0.938.All studies had high risks of bias,mainly due to participants,outcomes,and analysis.The most common predictors included glycated hemoglobin,age,duration of diabetes,lipid abnormalities,and fasting blood glucose.CONCLUSION The predictor model presented good differentiation,calibration,but there were significant methodological flaws and high risk of bias.Future studies should focus on improving the study design and study report,updating the model and verifying its adaptability and feasibility in clinical practice. 展开更多
关键词 Diabetic peripheral neuropathy predictive models Systematic review Risk factors Prognostic risk
下载PDF
Predictive value of machine learning models for lymph node metastasis in gastric cancer: A two-center study
8
作者 Tong Lu Miao Lu +4 位作者 Dong Wu Yuan-Yuan Ding Hao-Nan Liu Tao-Tao Li Da-Qing Song 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期85-94,共10页
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t... BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment. 展开更多
关键词 Machine learning Prediction model Gastric cancer Lymph node metastasis
下载PDF
Advancements and challenges in esophageal carcinoma prognostic models:A comprehensive review and future directions
9
作者 Jia Chen Qi-Chang Xing 《World Journal of Gastrointestinal Oncology》 2025年第2期311-314,共4页
In this article,we comment on the article published by Yu et al.By employing LASSO regression and Cox proportional hazard models,the article identified nine significant variables affecting survival,including body mass... In this article,we comment on the article published by Yu et al.By employing LASSO regression and Cox proportional hazard models,the article identified nine significant variables affecting survival,including body mass index,Karnofsky performance status,and tumor-node-metastasis staging.We firmly concur with Yu et al regarding the vital significance of clinical prediction models(CPMs),including logistic regression and Cox regression for assessment in esophageal carcinoma(EC).However,the nomogram's limitations and the complexities of integrating genetic factors pose challenges.The integration of immunological data with advanced statistics offers new research directions.High-throughput sequencing and big data,facilitated by machine learning,have revolutionized cancer research but require substantial computational resources.The future of CPMs in EC depends on leveraging these technologies to improve predictive accuracy and clinical application,addressing the need for larger datasets,patientreported outcomes,and regular updates for clinical relevance. 展开更多
关键词 predictive model Machine learning Esophageal carcinoma Survival rate FACTORS
下载PDF
Predictive value of magnetic resonance imaging parameters combined with tumor markers for rectal cancer recurrence risk after surgery
10
作者 Lei Wu Jing-Jie Zhu +2 位作者 Xiao-Han Liang He Tong Yan Song 《World Journal of Gastrointestinal Surgery》 2025年第2期161-172,共12页
BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the cor... BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes. 展开更多
关键词 Rectal cancer Magnetic resonance imaging RECURRENCE Prediction model Tumor markers
下载PDF
Risk factors and a predictive model of diabetic foot in hospitalized patients with type 2 diabetes
11
作者 Ming-Zhuo Li Fang Tang +6 位作者 Ya-Fei Liu Jia-Hui Lao Yang Yang Jia Cao Ru Song Peng Wu Yi-Bing Wang 《World Journal of Diabetes》 2025年第3期44-54,共11页
BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset D... BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset DF and develop a robust prediction model for hospitalized patients with type 2 diabetes.METHODS We included 6301 hospitalized patients with type 2 diabetes from January 2016 to December 2021.A univariate Cox model and least absolute shrinkage and selection operator analyses were applied to select the appropriate predictors.Nonlinear associations between continuous variables and the risk of DF were explored using restricted cubic spline functions.The Cox model was further employed to evaluate the impact of risk factors on DF.The area under the curve(AUC)was measured to evaluate the accuracy of the prediction model.RESULTS Seventy-five diabetic inpatients experienced DF.The incidence density of DF was 4.5/1000 person-years.A long duration of diabetes,lower extremity arterial disease,lower serum albumin,fasting plasma glucose(FPG),and diabetic nephropathy were independently associated with DF.Among these risk factors,the serum albumin concentration was inversely associated with DF,with a hazard ratio(HR)and 95%confidence interval(CI)of 0.91(0.88-0.95)(P<0.001).Additionally,a U-shaped nonlinear relationship was observed between the FPG level and DF.After adjusting for other variables,the HRs and 95%CI for FPG<4.4 mmol/L and≥7.0 mmol/L were 3.99(1.55-10.25)(P=0.004)and 3.12(1.66-5.87)(P<0.001),respectively,which was greater than the mid-range level(4.4-6.9 mmol/L).The AUC for predicting DF over 3 years was 0.797.CONCLUSION FPG demonstrated a U-shaped relationship with DF.Serum albumin levels were negatively associated with DF.The prediction nomogram model of DF showed good discrimination ability using diabetes duration,lower extremity arterial disease,serum albumin,FPG,and diabetic nephropathy(Clinicaltrial.gov NCT05519163). 展开更多
关键词 Type 2 diabetes Diabetic foot Nonlinear association Prediction model Retrospective cohort
下载PDF
Determinants of generalized anxiety and construction of a predictive model in patients with chronic obstructive pulmonary disease
12
作者 Yi-Pu Zhao Wei-Hua Liu Qun-Cheng Zhang 《World Journal of Psychiatry》 2025年第2期48-58,共11页
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d... BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff. 展开更多
关键词 Chronic obstructive pulmonary disease Generalized anxiety disorder predictive model Determinants analysis Forest plot
下载PDF
Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control
13
作者 Yuanxiang Luo Linshu Cai Nan Zhang 《Energy Engineering》 2025年第2期765-783,共19页
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct... Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system. 展开更多
关键词 Doubly-fed pumped storage unit model predictive control proportional-differential control link frequency regulation
下载PDF
Development of predictive models for egg freshness and shelf-life under different storage temperatures 被引量:1
14
作者 Chunli Quan Qian Xi +6 位作者 Xueping Shi Rongwei Han Qijing Du Fereidoun Forghani Chuanyun Xue Jiacheng Zhang Jun Wang 《Food Quality and Safety》 SCIE CSCD 2021年第4期344-350,共7页
The objective of the present study was to develop models for egg freshness and shelf-life predictions for the selected evaluation indicators including egg weight,Flaugh unit(HU),and albumen height.Experiments were car... The objective of the present study was to develop models for egg freshness and shelf-life predictions for the selected evaluation indicators including egg weight,Flaugh unit(HU),and albumen height.Experiments were carried out at different storage temperatures for a total period of 29-32 d.All data were collected and fitted in to Arrhenius equation for egg freshness,while the HU data were applied to a probability model for shelf-life prediction.The results showed that egg weight,albumen height,and HU decreased significantly,while albumen pH increased with the extension of storage time.The higher the storage temperature,the faster the egg quality decreased.In addition,the bias factor,accuracy factor,and the standard error of prediction were selected to verify the developed quality models.Maximum rescaled R-square statistic,the Hosmer-Lemeshow goodness-of-fit statistic,and the receiver operating characteristic curve were used to evaluate the goodness-of-fit of the developed probability model for the shelf-life of eggs,which indicated that the presented predictive models can be used to assess egg freshness and predict shelf-life during different storage temperatures. 展开更多
关键词 EGGS predictive models probability model shelf-life FRESHNESS
原文传递
Assessing recent recurrence after hepatectomy for hepatitis Brelated hepatocellular carcinoma by a predictive model based on sarcopenia
15
作者 Hong Peng Si-Yi Lei +9 位作者 Wei Fan Yu Dai Yi Zhang Gen Chen Ting-Ting Xiong Tian-Zhao Liu Yue Huang Xiao-Feng Wang Jin-Hui Xu Xin-Hua Luo 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1727-1738,共12页
BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction... BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction models for recent recurrence(time to recurrence<2 years)after hepatectomy for HCC.AIM To establish an interventable prediction model to estimate recurrence-free survival(RFS)after hepatectomy for HCC based on sarcopenia.METHODS We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time,and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography.94 of these patients were enrolled for external validation.Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort.A nomogram model was developed to predict the RFS of HCC patients,and its predictive performance was validated.The predictive efficacy of this model was evaluated using the receiver operating characteristic curve.RESULTS Multivariate analysis showed that sarcopenia[Hazard ratio(HR)=1.767,95%CI:1.166-2.678,P<0.05],alpha-fetoprotein≥40 ng/mL(HR=1.984,95%CI:1.307-3.011,P<0.05),the maximum diameter of tumor>5 cm(HR=2.222,95%CI:1.285-3.842,P<0.05),and hepatitis B virus DNA level≥2000 IU/mL(HR=2.1,95%CI:1.407-3.135,P<0.05)were independent risk factors associated with postoperative recurrence of HCC.Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease(SAMD)was established combined with other the above risk factors.The area under the curve of the SAMD model was 0.782(95%CI:0.705-0.858)in the training cohort(sensitivity 81%,specificity 63%)and 0.773(95%CI:0.707-0.838)in the validation cohort.Besides,a SAMD score≥110 was better to distinguish the high-risk group of postoperative recurrence of HCC.CONCLUSION Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC.A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC,which is superior to other models and contributes to prognosis prediction. 展开更多
关键词 ALPHA-FETOPROTEIN Hepatitis B virus HEPATECTOMY Hepatocellular carcinoma NOMOGRAM predictive models RECURRENCE Recurrence-free survival Risk factors SARCOPENIA
下载PDF
A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network
16
作者 Ming Gao Weiwei Cai +3 位作者 Yizhang Jiang Wenjun Hu Jian Yao Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期259-277,共19页
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se... Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results. 展开更多
关键词 Edge computing resource scheduling predictive models
下载PDF
Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei 被引量:4
17
作者 王全超 于洋 +2 位作者 李富花 张晓军 相建海 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第5期1221-1229,共9页
Genomic selection(GS)can be used to accelerate genetic improvement by shortening the selection interval.The successful application of GS depends largely on the accuracy of the prediction of genomic estimated breeding ... Genomic selection(GS)can be used to accelerate genetic improvement by shortening the selection interval.The successful application of GS depends largely on the accuracy of the prediction of genomic estimated breeding value(GEBV).This study is a fi rst attempt to understand the practicality of GS in Litopenaeus vannamei and aims to evaluate models for GS on growth traits.The performance of GS models in L.vannamei was evaluated in a population consisting of 205 individuals,which were genotyped for 6 359 single nucleotide polymorphism(SNP)markers by specifi c length amplifi ed fragment sequencing(SLAF-seq)and phenotyped for body length and body weight.Three GS models(RR-BLUP,Bayes A,and Bayesian LASSO)were used to obtain the GEBV,and their predictive ability was assessed by the reliability of the GEBV and the bias of the predicted phenotypes.The mean reliability of the GEBVs for body length and body weight predicted by the dif ferent models was 0.296 and 0.411,respectively.For each trait,the performances of the three models were very similar to each other with respect to predictability.The regression coeffi cients estimated by the three models were close to one,suggesting near to zero bias for the predictions.Therefore,when GS was applied in a L.vannamei population for the studied scenarios,all three models appeared practicable.Further analyses suggested that improved estimation of the genomic prediction could be realized by increasing the size of the training population as well as the density of SNPs. 展开更多
关键词 genomic selection model prediction growth traits penaeid shrimp
下载PDF
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
18
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control (MPC).
下载PDF
Predictive control of a class of bilinear systems based on global off-line models 被引量:1
19
作者 ZHANG Ri-dong WANG Shu-qing 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期1984-1988,共5页
A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machi... A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machine (SVM) dynamic approximation with analytical control law derived. The method does not need on-line parameters estimation because the system’s internal model has been transformed into an off-line global model. Compared with other traditional methods, this control law reduces on-line parameter estimating burden. In addition, its overall linear behavior treating method allows an analytical control law available and avoids on-line nonlinear optimization. Simulation results are presented in the article to illustrate the efficiency of the method. 展开更多
关键词 Bilinear systems Model predictive control (MPC) Adaptive control Support vector machine (SVM)
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
20
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部