期刊文献+
共找到958,864篇文章
< 1 2 250 >
每页显示 20 50 100
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
1
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
2
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Establishment of predictive models and determinants of preoperative gastric retention in endoscopic retrograde cholangiopancreatography 被引量:1
3
作者 Ying Jia Hao-Jun Wu +3 位作者 Tang Li Jia-Bin Liu Ling Fang Zi-Ming Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2574-2582,共9页
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t... BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value. 展开更多
关键词 CHOLANGIOPANCREATOGRAPHY Gastric retention Influencing factors predictive model ENDOSCOPE
下载PDF
Assessing recent recurrence after hepatectomy for hepatitis Brelated hepatocellular carcinoma by a predictive model based on sarcopenia
4
作者 Hong Peng Si-Yi Lei +9 位作者 Wei Fan Yu Dai Yi Zhang Gen Chen Ting-Ting Xiong Tian-Zhao Liu Yue Huang Xiao-Feng Wang Jin-Hui Xu Xin-Hua Luo 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1727-1738,共12页
BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction... BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction models for recent recurrence(time to recurrence<2 years)after hepatectomy for HCC.AIM To establish an interventable prediction model to estimate recurrence-free survival(RFS)after hepatectomy for HCC based on sarcopenia.METHODS We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time,and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography.94 of these patients were enrolled for external validation.Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort.A nomogram model was developed to predict the RFS of HCC patients,and its predictive performance was validated.The predictive efficacy of this model was evaluated using the receiver operating characteristic curve.RESULTS Multivariate analysis showed that sarcopenia[Hazard ratio(HR)=1.767,95%CI:1.166-2.678,P<0.05],alpha-fetoprotein≥40 ng/mL(HR=1.984,95%CI:1.307-3.011,P<0.05),the maximum diameter of tumor>5 cm(HR=2.222,95%CI:1.285-3.842,P<0.05),and hepatitis B virus DNA level≥2000 IU/mL(HR=2.1,95%CI:1.407-3.135,P<0.05)were independent risk factors associated with postoperative recurrence of HCC.Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease(SAMD)was established combined with other the above risk factors.The area under the curve of the SAMD model was 0.782(95%CI:0.705-0.858)in the training cohort(sensitivity 81%,specificity 63%)and 0.773(95%CI:0.707-0.838)in the validation cohort.Besides,a SAMD score≥110 was better to distinguish the high-risk group of postoperative recurrence of HCC.CONCLUSION Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC.A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC,which is superior to other models and contributes to prognosis prediction. 展开更多
关键词 ALPHA-FETOPROTEIN Hepatitis B virus HEPATECTOMY Hepatocellular carcinoma NOMOGRAM predictive models RECURRENCE Recurrence-free survival Risk factors SARCOPENIA
下载PDF
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system
5
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection model predictive control Uncertainty and disturbance estimator Nonlinear system
下载PDF
Predictive modeling for post operative delirium in elderly
6
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy predictive model Synthetic minority oversampling technique
下载PDF
A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network
7
作者 Ming Gao Weiwei Cai +3 位作者 Yizhang Jiang Wenjun Hu Jian Yao Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期259-277,共19页
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se... Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results. 展开更多
关键词 Edge computing resource scheduling predictive models
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
8
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(MPC)
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
9
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Developing and validating a predictive model of delivering large-forgestational-age infants among women with gestational diabetes mellitus
10
作者 Yi-Tian Zhu Lan-Lan Xiang +3 位作者 Ya-Jun Chen Tian-Ying Zhong Jun-Jun Wang Yu Zeng 《World Journal of Diabetes》 SCIE 2024年第6期1242-1253,共12页
BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestationa... BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestational diabetes mellitus(GDM)is significantly higher than that born to healthy pregnant women.However,traditional methods for the diagnosis of LGA have limitations.Therefore,this study aims to establish a predictive model that can effectively identify women with GDM who are at risk of delivering LGA infants.AIM To develop and validate a nomogram prediction model of delivering LGA infants among pregnant women with GDM,and provide strategies for the effective prevention and timely intervention of LGA.METHODS The multivariable prediction model was developed by carrying out the following steps.First,the variables that were associated with LGA risk in pregnant women with GDM were screened by univariate analyses,for which the P value was<0.10.Subsequently,Least Absolute Shrinkage and Selection Operator regression was fit using ten cross-validations,and the optimal combination factors were se-lected by choosing lambda 1se as the criterion.The final predictors were deter-mined by multiple backward stepwise logistic regression analysis,in which only the independent variables were associated with LGA risk,with a P value<0.05.Finally,a risk prediction model was established and subsequently evaluated by using area under the receiver operating characteristic curve,calibration curve and decision curve analyses.RESULTS After using a multistep screening method,we establish a predictive model.Several risk factors for delivering an LGA infant were identified(P<0.01),including weight gain during pregnancy,parity,triglyceride-glucose index,free tetraiodothyronine level,abdominal circumference,alanine transaminase-aspartate aminotransferase ratio and weight at 24 gestational weeks.The nomogram’s prediction ability was supported by the area under the curve(0.703,0.709,and 0.699 for the training cohort,validation cohort,and test cohort,respectively).The calibration curves of the three cohorts displayed good agreement.The decision curve showed that the use of the 10%-60%threshold for identifying pregnant women with GDM who are at risk of delivering an LGA infant would result in a positive net benefit.CONCLUSION Our nomogram incorporated easily accessible risk factors,facilitating individualized prediction of pregnant women with GDM who are likely to deliver an LGA infant. 展开更多
关键词 Large-for-gestational-age Gestational diabetes mellitus predictive model NOMOGRAM Triglyceride-glucose index
下载PDF
Influence of perinatal factors on full-term low-birth-weight infants and construction of a predictive model
11
作者 Liang Xu Xue-Juan Sheng +4 位作者 Lian-Ping Gu Zu-Ming Yang Zong-Tai Feng Dan-Feng Gu Li Gao 《World Journal of Clinical Cases》 SCIE 2024年第26期5901-5907,共7页
BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model ... BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model aims to guide the clinical management of pregnant women’s healthcare during pregnancy and support the healthy growth of newborns.METHODS A retrospective analysis was conducted on data from 1794 single full-term pregnant women who gave birth.Newborns were grouped based on birth weight:Those with birth weight<2.5 kg were classified as the low-weight group,and those with birth weight between 2.5 kg and 4 kg were included in the normal group.Multiple logistic regression analysis was used to identify the factors influencing the occurrence of full-term LBW.A risk prediction model was established based on the analysis results.The effectiveness of the model was analyzed using the Hosmer–Leme show test and receiver operating characteristic(ROC)curve to verify the accuracy of the predictions.RESULTS Among the 1794 pregnant women,there were 62 cases of neonatal weight<2.5 kg,resulting in an LBW incidence rate of 3.46%.The factors influencing full-term LBW included low maternal education level[odds ratio(OR)=1.416],fewer prenatal examinations(OR=2.907),insufficient weight gain during pregnancy(OR=3.695),irregular calcium supplementation during pregnancy(OR=1.756),and pregnancy hypertension syndrome(OR=2.192).The prediction model equation was obtained as follows:Logit(P)=0.348×maternal education level+1.067×number of prenatal examinations+1.307×insufficient weight gain during pregnancy+0.563×irregular calcium supplementation during pregnancy+0.785×pregnancy hypertension syndrome−29.164.The area under the ROC curve for this model was 0.853,with a sensitivity of 0.852 and a specificity of 0.821.The Hosmer–Leme show test yieldedχ^(2)=2.185,P=0.449,indicating a good fit.The overall accuracy of the clinical validation model was 81.67%.CONCLUSION The occurrence of full-term LBW is related to maternal education,the number of prenatal examinations,weight gain during pregnancy,calcium supplementation during pregnancy,and pregnancy-induced hypertension.The constructed predictive model can effectively predict the risk of full-term LBW. 展开更多
关键词 Pregnant women Perinatal care Low-birth-weight infants Influencing factors Prediction model
下载PDF
Path-Following Based on Nonlinear Model Predictive Control with Adaptive Path Preview
12
作者 Jun-Ting LI Chih-Keng CHEN 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期158-164,共7页
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,... This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC. 展开更多
关键词 path following curvilinear coordinates nonlinear model predictive control
下载PDF
Identification of risk factors and construction of a nomogram predictive model for post-stroke infection in patients with acute ischemic stroke
13
作者 Xiao-Chen Liu Xiao-Jie Chang +4 位作者 Si-Ren Zhao Shan-Shan Zhu Yan-Yan Tian Jing Zhang Xin-Yue Li 《World Journal of Clinical Cases》 SCIE 2024年第20期4048-4056,共9页
BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection... BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection also significantly increases the risk of disease and death.Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke(AIS)is of great significance.It can guide clinical practice to perform corresponding prevention and control work early,minimizing the risk of stroke-related infections and ensuring favorable disease outcomes.AIM To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model.METHODS The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected.Baseline data and post-stroke infection status of all study subjects were assessed,and the risk factors for poststroke infection in patients with AIS were analyzed.RESULTS Totally,48 patients with AIS developed stroke,with an infection rate of 23.3%.Age,diabetes,disturbance of consciousness,high National Institutes of Health Stroke Scale(NIHSS)score at admission,invasive operation,and chronic obstructive pulmonary disease(COPD)were risk factors for post-stroke infection in patients with AIS(P<0.05).A nomogram prediction model was constructed with a C-index of 0.891,reflecting the good potential clinical efficacy of the nomogram prediction model.The calibration curve also showed good consistency between the actual observations and nomogram predictions.The area under the receiver operating characteristic curve was 0.891(95%confidence interval:0.839–0.942),showing predictive value for post-stroke infection.When the optimal cutoff value was selected,the sensitivity and specificity were 87.5%and 79.7%,respectively.CONCLUSION Age,diabetes,disturbance of consciousness,NIHSS score at admission,invasive surgery,and COPD are risk factors for post-stroke infection following AIS.The nomogram prediction model established based on these factors exhibits high discrimination and accuracy. 展开更多
关键词 Acute ischemic stroke INFECTION Risk factors Nomogram prediction model Chronic obstructive pulmonary disease
下载PDF
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
14
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 Autonomous driving model predictive control(MPC) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Development and validation of a predictive model for acute-onchronic liver failure after transjugular intrahepatic portosystemic shunt
15
作者 Wei Zhang Ya-Ni Jin +5 位作者 Chang Sun Xiao-Feng Zhang Rui-Qi Li Qin Yin Jin-Jun Chen Yu-Zheng Zhuge 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第5期1301-1310,共10页
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and const... BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value. 展开更多
关键词 Acute-on-chronic liver failure Transjugular intrahepatic portosystemic shunt Influencing factor analysis Risk prediction model NOMOGRAM
下载PDF
Predictive value of machine learning models for lymph node metastasis in gastric cancer: A two-center study
16
作者 Tong Lu Miao Lu +4 位作者 Dong Wu Yuan-Yuan Ding Hao-Nan Liu Tao-Tao Li Da-Qing Song 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期85-94,共10页
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t... BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment. 展开更多
关键词 Machine learning Prediction model Gastric cancer Lymph node metastasis
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
17
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char:A statistical neural network approach
18
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +4 位作者 Noor Zainab Habib Aliyu Usman Abiola Adebanjo Surajo Abubakar Wada Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2024年第3期318-333,共16页
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw... The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices. 展开更多
关键词 Waste tire Neural network Sustainable practices Asphalt mixtures predictive model
下载PDF
Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control
19
作者 Jun Zhao Chaoying Yang +1 位作者 Ran Li Jinge Song 《Energy Engineering》 EI 2024年第3期747-767,共21页
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve... Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples. 展开更多
关键词 Demand response model predictive control multiple time scales operating simulation
下载PDF
Disturbance rejection tube model predictive levitation control of maglev trains
20
作者 Yirui Han Xiuming Yao Yu Yang 《High-Speed Railway》 2024年第1期57-63,共7页
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa... Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy. 展开更多
关键词 Maglev trains Levitation system Constrained control Disturbance observer model predictive control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部