Based on the Preissmann implicit scheme for the one-dimensional Saint-Venant equation, the mathematical model for one-dimensional fiver networks and canal networks was developed and the key issues on the model were ex...Based on the Preissmann implicit scheme for the one-dimensional Saint-Venant equation, the mathematical model for one-dimensional fiver networks and canal networks was developed and the key issues on the model were expatiated particularly in this article. This model applies the method of three-steps solution for chaunel-junction-channel to simulate the river networks, and the Gauss elimination method was used to calculate the sparse matrix. This model was applied to simulate the tree-type irrigation canal networks, complex looped channel networks and the Lower Columbia Slough networks. The results of water level and discharge agree with the data from the Adlul and field data. The model is proved to be robust for simulating unsteady flows in river networks with various degrees of complex structure. The calculated results show that this model is useful for engineering applications in complicated river networks. Future research was recommended to focus on setting up ecological numerical model of water quality in river networks and canal networks.展开更多
The Preissmann implicit scheme was used to discretize the one-dimensional Saint-Venant equations, the river-junction-fiver method was applied to resolve the hydrodynamic and water quality model for river networks, and...The Preissmann implicit scheme was used to discretize the one-dimensional Saint-Venant equations, the river-junction-fiver method was applied to resolve the hydrodynamic and water quality model for river networks, and the key issues on the model were expatiated particularly in this article. This water quality module was designed to compute time dependent concentrations of a series of constituents, which are primarily governed by the processes of advection, dispersion and chemical reactions. Based on the theory of Water Quality Analysis Simulation Program (WASP) water quality model, emphasis was given to the simulation of the biogeochemical transformations that determine the fate of nutrients, in particular, the simulation of the aquatic cycles of nitrogen and phosphorus compounds. This model also includes procedures for the determination of growth and death of phytoplankton. This hydrodynamic and water quality model was applied to calculate two river networks. As illustrated by the numerical examples, the calculated water level and discharge agree with the measured data and the simulated trends and magnitudes of water quality constituents are generally in good agreement with field observations. It is concluded that the presented model is useful in the pollutant control and in the determination of pollutant-related problems for river networks.展开更多
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2005CB724202).
文摘Based on the Preissmann implicit scheme for the one-dimensional Saint-Venant equation, the mathematical model for one-dimensional fiver networks and canal networks was developed and the key issues on the model were expatiated particularly in this article. This model applies the method of three-steps solution for chaunel-junction-channel to simulate the river networks, and the Gauss elimination method was used to calculate the sparse matrix. This model was applied to simulate the tree-type irrigation canal networks, complex looped channel networks and the Lower Columbia Slough networks. The results of water level and discharge agree with the data from the Adlul and field data. The model is proved to be robust for simulating unsteady flows in river networks with various degrees of complex structure. The calculated results show that this model is useful for engineering applications in complicated river networks. Future research was recommended to focus on setting up ecological numerical model of water quality in river networks and canal networks.
基金Project supported by the National Natural Science Foundation of China (Grant No.50839001)the National Basic Research Program of China (973 Program, Grant No. 2005CB724202).
文摘The Preissmann implicit scheme was used to discretize the one-dimensional Saint-Venant equations, the river-junction-fiver method was applied to resolve the hydrodynamic and water quality model for river networks, and the key issues on the model were expatiated particularly in this article. This water quality module was designed to compute time dependent concentrations of a series of constituents, which are primarily governed by the processes of advection, dispersion and chemical reactions. Based on the theory of Water Quality Analysis Simulation Program (WASP) water quality model, emphasis was given to the simulation of the biogeochemical transformations that determine the fate of nutrients, in particular, the simulation of the aquatic cycles of nitrogen and phosphorus compounds. This model also includes procedures for the determination of growth and death of phytoplankton. This hydrodynamic and water quality model was applied to calculate two river networks. As illustrated by the numerical examples, the calculated water level and discharge agree with the measured data and the simulated trends and magnitudes of water quality constituents are generally in good agreement with field observations. It is concluded that the presented model is useful in the pollutant control and in the determination of pollutant-related problems for river networks.