The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic perf...An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.展开更多
This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p...High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.展开更多
This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed t...This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.展开更多
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control...In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.展开更多
An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the tes...An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.展开更多
A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the d...A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.展开更多
An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input sat...An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.First,we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS,translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system.Then,an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed,taking into account the presence of control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.Based on the established mathematical model,an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method.According to the error transformation model,a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint.Finally,numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration.展开更多
The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlle...The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlled vehicle.In this context,a novel form of the prescribed performance guiding vector field is introduced,accompanied by a prescribed-time sliding mode con-trol approach.Furthermore,the interdependence among the pre-scribed parameters is discussed.To validate the effectiveness of the proposed method,numerical simulations are presented to demonstrate the efficacy of the approach.展开更多
This research investigates the semi-global practicalfinite-time prescribed performance consensus control issue for a class of second-order multi-agent systems with unknown nonlinear functions.Unlike the previousfinite...This research investigates the semi-global practicalfinite-time prescribed performance consensus control issue for a class of second-order multi-agent systems with unknown nonlinear functions.Unlike the previousfinite-time control set by afinite-time performance function,we givefinite-time control by constraining the terminal sliding manifold in a performance function.In addition,an adaptive neural network control scheme is designed,which simplifies the controller and avoids the chattering issue existing in traditional sliding mode control.Eventually,a novel adaptivefinite-time prescribed performance consensus control strategy is designed,which ensures that all system variables are semi-globally practicalfinite-time stable and consensus errors of the multi-agent systems converge within the prescribed region infinite time.The effectiveness and practicality of the presented control strategy are evaluated by conducting simulation cases.展开更多
In this work,we study a Nash equilibrium(NE)seeking problem for strongly monotone non-cooperative games with prescribed performance.Unlike general NE seeking algorithms,the proposed prescribed-performance NE seeking l...In this work,we study a Nash equilibrium(NE)seeking problem for strongly monotone non-cooperative games with prescribed performance.Unlike general NE seeking algorithms,the proposed prescribed-performance NE seeking laws ensure that the convergence error evolves within a predefined region.Thus,the settling time,convergence rate,and maximum overshoot of the algorithm can be guaranteed.First,we develop a second-order Newton-like algorithm that can guarantee prescribed performance and asymptotically converge to the NE of the game.Then,we develop a first-order gradient-based algorithm.To remove some restrictions on this first-order algorithm,we propose two discontinuous dynamical system-based algorithms using tools from non-smooth analysis and adaptive control.We study the special case in optimization problems.Then,we investigate the robustness of the algorithms.It can be proven that the proposed algorithms can guarantee asymptotic convergence to the Nash equilibrium with prescribed performance in the presence of bounded disturbances.Furthermore,we consider a second-order dynamical system solution.The simulation results verify the effectiveness and efficiency of the algorithms,in terms of their convergence rate and disturbance rejection ability.展开更多
In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unk...In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.展开更多
This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time...This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time-varying uncertainties of the system are handled byutilising bound estimation method. The proposed controller not only ensures the prescribedtracking performance, but also reduces the communication burden. By using Lyapunov stabilityanalysis, it is proven that all of the closed-loop signals are bounded, and the tracking errorcan converge to zero. Simultaneously, Zeno behaviour is excluded. Finally, the simulation resultsare utilised to illustrate the effectiveness of the proposed adaptive control scheme.展开更多
It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs...It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.展开更多
In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of...In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by intr...In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by introducing several key transformation functions and selecting the initial value of the time-varying scaling function,the symmetric prescribed performance with global and semi-global properties can be handled uniformly,without the need for control re-design.Secondly,to handle the problem of unknown time-varying control coefficient with an unknown sign,we propose an enhanced Nussbaum function(ENF)bearing some unique properties and characteristics,with which the complex stability analysis based on specific Nussbaum functions as commonly used is no longer required.Thirdly,by utilizing the core-function information technique,the nonparametric uncertainties in the system are gracefully handled so that no approximator is required.Furthermore,simulation results verify the effectiveness and benefits of the approach.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金supported by the National Natural Science Foundation of China (6207319761933006)National International Science and Technology Cooperation Base on Railway Vehicle Operation Engineering of Beijing Jiaotong University (BMRV20KF08)。
文摘An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
基金supported by the National Natural Science Foundation of China(Grant 62273029).
文摘High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.
基金This work was supported by the National Natural Science Foundation of China(62003162,61833013,62020106003)the Natural Science Foundation of Jiangsu Province of China(BK20200416)+3 种基金the China Postdoctoral Science Foundation(2020TQ0151,2020M681590)the State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University(2019-KF-23-05)the 111 Project(B20007)the Natural Sciences and Engineering Research Council of Canada.
文摘This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant No.KJ2015A256)
文摘In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.
文摘An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.
基金This work was supported in part by the National Natural Science Foundation of China(No.62003163)the National Science Fund for the Key R&D projects(Social Development)in Jiangsu Province of China(No.BE2020704)+3 种基金the Aeronautical Science Foundation of China(Nos.201957052001,20200007052001)the Jiangsu Province“333”project(No.BRA2019051)the Postdoctoral Research Foundation of Jiangsu Province(No.2020Z112)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20200415)。
文摘A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.
基金supported by Central Government to Guide local scientific and Technological Development of Hebei Province(No.216Z1902G)Major Program of National Natural Science Foundation of China(U20A20332)+1 种基金Natural Science Foundation of Hebei Province(A2022203024)Provincial Key Laboratory Performance Subsidy Project(22567612H).
文摘An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.First,we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS,translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system.Then,an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed,taking into account the presence of control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.Based on the established mathematical model,an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method.According to the error transformation model,a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint.Finally,numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlled vehicle.In this context,a novel form of the prescribed performance guiding vector field is introduced,accompanied by a prescribed-time sliding mode con-trol approach.Furthermore,the interdependence among the pre-scribed parameters is discussed.To validate the effectiveness of the proposed method,numerical simulations are presented to demonstrate the efficacy of the approach.
文摘This research investigates the semi-global practicalfinite-time prescribed performance consensus control issue for a class of second-order multi-agent systems with unknown nonlinear functions.Unlike the previousfinite-time control set by afinite-time performance function,we givefinite-time control by constraining the terminal sliding manifold in a performance function.In addition,an adaptive neural network control scheme is designed,which simplifies the controller and avoids the chattering issue existing in traditional sliding mode control.Eventually,a novel adaptivefinite-time prescribed performance consensus control strategy is designed,which ensures that all system variables are semi-globally practicalfinite-time stable and consensus errors of the multi-agent systems converge within the prescribed region infinite time.The effectiveness and practicality of the presented control strategy are evaluated by conducting simulation cases.
基金supported by the RIE2020 Industry Alignment Fund-Industry Collaboration Projects(IAF-ICP)Funding Initiative,as well as cash and in-kind contribution from the industry partner(s).
文摘In this work,we study a Nash equilibrium(NE)seeking problem for strongly monotone non-cooperative games with prescribed performance.Unlike general NE seeking algorithms,the proposed prescribed-performance NE seeking laws ensure that the convergence error evolves within a predefined region.Thus,the settling time,convergence rate,and maximum overshoot of the algorithm can be guaranteed.First,we develop a second-order Newton-like algorithm that can guarantee prescribed performance and asymptotically converge to the NE of the game.Then,we develop a first-order gradient-based algorithm.To remove some restrictions on this first-order algorithm,we propose two discontinuous dynamical system-based algorithms using tools from non-smooth analysis and adaptive control.We study the special case in optimization problems.Then,we investigate the robustness of the algorithms.It can be proven that the proposed algorithms can guarantee asymptotic convergence to the Nash equilibrium with prescribed performance in the presence of bounded disturbances.Furthermore,we consider a second-order dynamical system solution.The simulation results verify the effectiveness and efficiency of the algorithms,in terms of their convergence rate and disturbance rejection ability.
基金supported in part by the National Key Research and Development Program of China under grant(No.2022YFB4701400/4701401)by the National Natural Science Foundation of China under grant(No.61991400,No.61991403,No.62250710167,No.61860206008,No.61933012,No.62273064,No.62203078)+2 种基金in part by the National Key Research and Development Program of China under grant(No.2021ZD0201300)in part by the Innovation Support Program for International Students Returning to China under grant(No.cx2022016)in part by the Chongqing Medical Scientific Research Project under grant(No.2022DBXM001).
文摘In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.
基金the Funds of National Science of China[grant number 61973146]in part by the Distinguished Young Scientifific Research Talents Plan in Liaoning Province[grant number XLYC1907077]in part by the Taishan Scholar Project of Shandong Province ofChina[grant number tsqn201909097].
文摘This paper is concerned with the adaptive tracking control problem of nonlinear time-varyingsystems. Based on the backstepping technology, an event-based prescribed performance controlscheme is developed. And the time-varying uncertainties of the system are handled byutilising bound estimation method. The proposed controller not only ensures the prescribedtracking performance, but also reduces the communication burden. By using Lyapunov stabilityanalysis, it is proven that all of the closed-loop signals are bounded, and the tracking errorcan converge to zero. Simultaneously, Zeno behaviour is excluded. Finally, the simulation resultsare utilised to illustrate the effectiveness of the proposed adaptive control scheme.
基金supported in part by the National Natural Science Foundation of China(61933012,62273064,61991400,61991403,62250710167,61860206008,62203078)the National Key Research and Development Program of China(2023YFA1011803)+2 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Innovation Support Program for Inter national Students Returning to China(cx2022016)the Central University Project(2022CDJKYJH019).
文摘It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.62033003,62003098,61973091the Local Innovative and Research Teams Project of Guangdong Special Support Program under Grant No.2019BT02X353the China Postdoctoral Science Foundation under Grant Nos.2019M662813 and 2020T130124。
文摘In this paper,the formation control problem is investigated for a team of uncertain underactuated surface vessels(USVs)based on a directed graph.Considering the risk of collision and the limited communication range of USVs,the prescribed performance control(PPC)methodology is employed to ensure collision avoidance and connectivity maintenance.An event-triggered mechanism is designed to reasonably use the limited communication resources.Moreover,neural networks(NNs)and an auxiliary variable are constructed to deal with the problems of uncertain nonlinearities and underactuation,respectively.Then,an event-triggered formation control scheme is proposed to ensure that all signals of the closed-loop system are uniformly ultimately bounded(UUB).Finally,simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
基金supported in part by the National Key Research and Development Program of China(2021ZD0201300)in part by the National Natural Science Foundation of China(61860206008,61933012)。
文摘In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by introducing several key transformation functions and selecting the initial value of the time-varying scaling function,the symmetric prescribed performance with global and semi-global properties can be handled uniformly,without the need for control re-design.Secondly,to handle the problem of unknown time-varying control coefficient with an unknown sign,we propose an enhanced Nussbaum function(ENF)bearing some unique properties and characteristics,with which the complex stability analysis based on specific Nussbaum functions as commonly used is no longer required.Thirdly,by utilizing the core-function information technique,the nonparametric uncertainties in the system are gracefully handled so that no approximator is required.Furthermore,simulation results verify the effectiveness and benefits of the approach.