The bonding of steel plate with QTi3.5-3.5 graphite slurry was studied by using pressing bonding technique. The influence of pressing time on the interracial mechanical property of bonding plate was researched. The re...The bonding of steel plate with QTi3.5-3.5 graphite slurry was studied by using pressing bonding technique. The influence of pressing time on the interracial mechanical property of bonding plate was researched. The results show that: under the conditions of 620℃ preheating temperature of steel plate, 530℃ preheating temperature of dies, 46% solid fraction of QTi3.5-3.5 graphite slurry and 50 MPa pressure, there exists a nonlinear relationship between pressing time and interracial shear strength. The interracial shear strength of bonding plate increases with increasing pressing time and reaches a largest value about 127 MPa when pressing time is longer than 120 s. At the interface with the best mechanical property, there exists a continuous Fe-Cu inter-diffusion zone and a metallurgical bonding.展开更多
In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based...In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based on Taguchi orthogonal array design with different types of hydrophilic polymers (X1), varying hydrophilic polymer/ethyl cellulose ratio (X2), and addition of magnesium stearate (X3) as independent variables. The design was quantitatively evalu-ated by best fit mathematical model. The results from the statistical analysis revealed that factor X1, X3 and interaction factors between X1X2 and X1X3 were found to be significant on the re-sponse lag time (Y1), where as only factor X1 was found to be significant on the response percent drug release at 8 hrs (Y2). A numerical optimization technique by desirability function was used to optimize the response variables, each having a different target. Based on the re-sults of optimization study, HPC was identified as the most suitable hydrophilic polymer and incorporation of hydrophobic agent magnesium stearate, could significantly improve the lag time of the timed-release press-coated tablet.展开更多
基金This project is supported by the National Natural Science Foundation of China(Nos.50274047 and 50304001)the Natural Science Foundation of Beijing+1 种基金the Ministry of Education of PRC Foundationthe Beijing Jiaotong University Foundation.
文摘The bonding of steel plate with QTi3.5-3.5 graphite slurry was studied by using pressing bonding technique. The influence of pressing time on the interracial mechanical property of bonding plate was researched. The results show that: under the conditions of 620℃ preheating temperature of steel plate, 530℃ preheating temperature of dies, 46% solid fraction of QTi3.5-3.5 graphite slurry and 50 MPa pressure, there exists a nonlinear relationship between pressing time and interracial shear strength. The interracial shear strength of bonding plate increases with increasing pressing time and reaches a largest value about 127 MPa when pressing time is longer than 120 s. At the interface with the best mechanical property, there exists a continuous Fe-Cu inter-diffusion zone and a metallurgical bonding.
文摘In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based on Taguchi orthogonal array design with different types of hydrophilic polymers (X1), varying hydrophilic polymer/ethyl cellulose ratio (X2), and addition of magnesium stearate (X3) as independent variables. The design was quantitatively evalu-ated by best fit mathematical model. The results from the statistical analysis revealed that factor X1, X3 and interaction factors between X1X2 and X1X3 were found to be significant on the re-sponse lag time (Y1), where as only factor X1 was found to be significant on the response percent drug release at 8 hrs (Y2). A numerical optimization technique by desirability function was used to optimize the response variables, each having a different target. Based on the re-sults of optimization study, HPC was identified as the most suitable hydrophilic polymer and incorporation of hydrophobic agent magnesium stearate, could significantly improve the lag time of the timed-release press-coated tablet.