To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating l...To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).展开更多
Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product o...Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling.展开更多
目的探讨脑血流自动调节范围内稳定脑血流速度的血流动力学因素。方法利用经颅多普勒检测SD大鼠大脑中动脉的血流速度(cerebral blood flow velocity,CBFV),并同步记录有创动脉血压,绘制自动调节曲线,判断脑血流自动调节上、下限。计算...目的探讨脑血流自动调节范围内稳定脑血流速度的血流动力学因素。方法利用经颅多普勒检测SD大鼠大脑中动脉的血流速度(cerebral blood flow velocity,CBFV),并同步记录有创动脉血压,绘制自动调节曲线,判断脑血流自动调节上、下限。计算临界关闭压(critical closing pressure,CCP)和血管面积阻力指数(resistance area product,RAP)。分析CCP、RAP与平均动脉压(mean artery blood pressure,MABP)之间的关系。结果动脉血压升高或降低过程中,正常大鼠脑血流自动调节上、下限分别为148.12±7.49 mm Hg、62.96±3.34 mm Hg。脑血流自动调节范围内,CBFV随动脉血压改变轻微(每10 mm Hg MABP,升压:0.65±0.27 cm/s;降压:0.43±0.23 cm/s),而CCP和RAP则随动脉血压明显改变(每10 mm Hg MABP,升压:4.60±1.06 mm Hg、0.11±0.04mm Hg;降压:6.74±0.59 mm Hg、0.09±0.02 mm Hg)。虽然CBFV、CCP、RAP的变化都与MABP相关,但控制CBFV的变动后,CCP和RAP随MABP改变相关性更加明显,其中CCP的变化幅度以及与MABP的相关性明显大于RAP(升压:Beta=0.561、0.418;降压:Beta=0.694、0.266,P均=0.000)。结论大鼠脑血流自动调节有效范围内,脑血流的稳定主要通过CCP和RAP改变对抗动脉血压的变动而实现,尤其是CCP相应升高或降低。展开更多
基金Project supported by the Ministry of Education,Science Technology(MEST)Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation
文摘To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).
基金Supported by the China National Science and Technology Major Project(2016ZX058-001)the CNOOC Scientific and Technological Project(CNOOC-KJ135-ZDXM36-TJ).
文摘Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling.
文摘目的探讨脑血流自动调节范围内稳定脑血流速度的血流动力学因素。方法利用经颅多普勒检测SD大鼠大脑中动脉的血流速度(cerebral blood flow velocity,CBFV),并同步记录有创动脉血压,绘制自动调节曲线,判断脑血流自动调节上、下限。计算临界关闭压(critical closing pressure,CCP)和血管面积阻力指数(resistance area product,RAP)。分析CCP、RAP与平均动脉压(mean artery blood pressure,MABP)之间的关系。结果动脉血压升高或降低过程中,正常大鼠脑血流自动调节上、下限分别为148.12±7.49 mm Hg、62.96±3.34 mm Hg。脑血流自动调节范围内,CBFV随动脉血压改变轻微(每10 mm Hg MABP,升压:0.65±0.27 cm/s;降压:0.43±0.23 cm/s),而CCP和RAP则随动脉血压明显改变(每10 mm Hg MABP,升压:4.60±1.06 mm Hg、0.11±0.04mm Hg;降压:6.74±0.59 mm Hg、0.09±0.02 mm Hg)。虽然CBFV、CCP、RAP的变化都与MABP相关,但控制CBFV的变动后,CCP和RAP随MABP改变相关性更加明显,其中CCP的变化幅度以及与MABP的相关性明显大于RAP(升压:Beta=0.561、0.418;降压:Beta=0.694、0.266,P均=0.000)。结论大鼠脑血流自动调节有效范围内,脑血流的稳定主要通过CCP和RAP改变对抗动脉血压的变动而实现,尤其是CCP相应升高或降低。