Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oi...Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oil slurries prepared by different kinds of oil varies differently during heating. The viscosity of the coal-oil slurry prepared by the catalytic cracking slurry (FCC) generally decreases during heating. However, the viscosity of the coal-oil slurry prepared by the high-temperature coal tar (CT) will peak at 338 ℃ during heating. The differences in viscosity variations of coal-oil slurries are analyzed. In addition to the temperature, the properties of the solvents and coal are the main influencing factors. Because the used coal contains a large number of polar functional groups, the swelling behavior of the coal in polar solvent (CT) is stronger than that in non-polar solvent (FCC). The swelling effect of the coal can result in the appearance of the viscosity peak. Therefore, before 100 ~C, the solvent molecules entering into the coal pores is the main influencing factor of coal-oil slurries viscosity variations. After 100 ℃, the increasing of particle size of coal particles is the main influencing factor of coal-oil slurries viscosity variations.展开更多
Red mud has relatively small solid particles (d50= 13.02 μm) and will flow in paste form under high pressure during pipeline transport. Red mud belongs to a two-phase flow of materials with high viscosity and a hig...Red mud has relatively small solid particles (d50= 13.02 μm) and will flow in paste form under high pressure during pipeline transport. Red mud belongs to a two-phase flow of materials with high viscosity and a high concentration of non-sedimentation, homogeneous solid-liquids. It is difficult to test its rheological properties under atmospheric pressure. Measurements such as rotational viscometry can not reflect the real state of the material when it is flowing in a pipe. Tested rheological parameters are somewhat higher than the actual values. In our investigation, grain shape, distinctive modality and grain size distribution of red mud were tested. Based on the principle of tube measurement, rheological experiments on red mud at different concentrations were carried out by using our independently developed tube-type pressure theology test facility, and obtained constitutive equations. We conclude that red mud behaves as non-Newtonian pseudo-plastic fluid in pipe flows. Its consistency and power-law indices vary considerably with different concentrations.展开更多
文摘Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oil slurries prepared by different kinds of oil varies differently during heating. The viscosity of the coal-oil slurry prepared by the catalytic cracking slurry (FCC) generally decreases during heating. However, the viscosity of the coal-oil slurry prepared by the high-temperature coal tar (CT) will peak at 338 ℃ during heating. The differences in viscosity variations of coal-oil slurries are analyzed. In addition to the temperature, the properties of the solvents and coal are the main influencing factors. Because the used coal contains a large number of polar functional groups, the swelling behavior of the coal in polar solvent (CT) is stronger than that in non-polar solvent (FCC). The swelling effect of the coal can result in the appearance of the viscosity peak. Therefore, before 100 ~C, the solvent molecules entering into the coal pores is the main influencing factor of coal-oil slurries viscosity variations. After 100 ℃, the increasing of particle size of coal particles is the main influencing factor of coal-oil slurries viscosity variations.
文摘Red mud has relatively small solid particles (d50= 13.02 μm) and will flow in paste form under high pressure during pipeline transport. Red mud belongs to a two-phase flow of materials with high viscosity and a high concentration of non-sedimentation, homogeneous solid-liquids. It is difficult to test its rheological properties under atmospheric pressure. Measurements such as rotational viscometry can not reflect the real state of the material when it is flowing in a pipe. Tested rheological parameters are somewhat higher than the actual values. In our investigation, grain shape, distinctive modality and grain size distribution of red mud were tested. Based on the principle of tube measurement, rheological experiments on red mud at different concentrations were carried out by using our independently developed tube-type pressure theology test facility, and obtained constitutive equations. We conclude that red mud behaves as non-Newtonian pseudo-plastic fluid in pipe flows. Its consistency and power-law indices vary considerably with different concentrations.