期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The approach to calculate the aerodynamic drag of maglev train in the evacuated tube 被引量:10
1
作者 Jiaqing Ma Dajing Zhou +2 位作者 Lifeng Zhao Yong Zhang Yong Zhao 《Journal of Modern Transportation》 2013年第3期200-208,共9页
In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the... In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation. 展开更多
关键词 Evacuated tube Maglev train Aerodynamic drag pressure in the tube
下载PDF
CFD modeling of pressure drop and drag coefficient in fixed beds:Wall effects 被引量:6
2
作者 Rupesh K.Reddy Jyeshtharaj B.Joshi 《Particuology》 SCIE EI CAS CSCD 2010年第1期37-43,共7页
Simulations of fixed beds having column to particle diameter ratio (D/dp) of 3, 5 and 10 were performed in the creeping, transition and turbulent flow regimes, where Reynolds number (dpVLρL/μL) was varied from 0... Simulations of fixed beds having column to particle diameter ratio (D/dp) of 3, 5 and 10 were performed in the creeping, transition and turbulent flow regimes, where Reynolds number (dpVLρL/μL) was varied from 0.1 to 10,000. The deviations from Ergun's equation due to the wall effects, which are important in D/dp 〈 15 beds were well explained by the CFD simulations. Thus, an increase in the pressure drop was observed due to the wall friction in the creeping flow, whereas, in turbulent regime a decrease in the pressure drop was observed due to the channeling near the wall. It was observed that, with an increase in the D/dp ratio, the effect of wall on drag coefficient decreases and drag coefficient nearly approaches to Ergun's equation. The predicted drag coefficient values were in agreement with the experimental results reported in the literature, in creeping flow regime, whereas in turbulent flow the difference was within 10-15%. 展开更多
关键词 Computational fluid dynamics Fixed bed Wall effects pressure drop drag coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部