期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height
1
作者 李猛 张吉雄 +1 位作者 黄艳利 高瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1881-1888,共8页
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with... To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation. 展开更多
关键词 super great mining height key stratum cantilever beam mine pressure manifestation under cover
下载PDF
THEORETICAL AND EXPERIMENTAL STUDY ON THE PRESSURE AND VACUUM CONTINUOUS CONTROL SYSTEM BASED ON HYBRID PUMP 被引量:3
2
作者 LI Jinyun DU Jingmin FU Xiaoyun LI Baoren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期74-78,共5页
A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis... A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption ofa fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results. 展开更多
关键词 Hybrid pump pressure and vacuum continuous control Fuzzy-PID control Semi-physical flight height simulation
下载PDF
Flow-regime transitions in fluidized beds of non-spherical particles 被引量:3
3
作者 H. Kruggel-Emden K. Vollmari 《Particuology》 SCIE EI CAS CSCD 2016年第6期1-15,共15页
Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-s... Fluidized beds frequently involve non-spherical particles, especially if biomass is present. For spheri- cal particles, numerous experimental investigations have been reported in the literature. In contrast, complex-shaped particles have received much less attention. There is a lack of understanding of how par- ticle shape influences flow-regime transitions. In this study, differently shaped Geldart group D particles are experimentally examined. Bed height, pressure drop, and their respective fluctuations are analyzed. With increasing deviation of particle shape from spheres, differences in flow-regime transitions occur with a tendency for the bed to form channels instead of undergoing smooth fluidization. The correlations available in the literature for spherical particles are limited in their applicability when used to predict regime changes for complex-shaped particles. Hence, based on existing correlations, improvements are derived. 展开更多
关键词 Fluidized bed Flow regimes Non-spherical particles pressure drop and fluctuations Bed height
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部