期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Research Status, Critical Technologies, and Development Trends of Hydraulic Pressure Pulsation Attenuator 被引量:2
1
作者 Yan Wang Tongsheng Shen +2 位作者 Chunsen Tan Jian Fu Shengrong Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期114-130,共17页
Hydraulic pumps are a positive displacement pump whose working principle causes inherent output flow pulsation.Flow pulsation produces pressure pulsation when encountering liquid resistance.Pressure pulsation spreads ... Hydraulic pumps are a positive displacement pump whose working principle causes inherent output flow pulsation.Flow pulsation produces pressure pulsation when encountering liquid resistance.Pressure pulsation spreads in the pipeline and causes vibration,noise,damage,and even pipeline rupture and major safety accidents.With the development of airborne hydraulic systems with high pressure,power,and flow rate,the hazards of vibration and noise caused by pressure pulsation are also amplified,severely restricting the application and development of hydraulic systems.In this review paper,the mechanism,harm,and suppression method of pressure pulsation in hydraulic systems are analyzed.Then,the classification and characteristics of pulsation attenuators according to different working principles are described.Furthermore,the critical technology of simulation design,matching method with airborne piston pumps,and preliminary design method of pulsation attenuators are proposed.Finally,the development trend of pulsation attenuators is prospected.This paper provides a reference for the research and application of pressure pulsation attenuators. 展开更多
关键词 Hydraulic pump pressure pulsation pulsation attenuator
下载PDF
Pressure pulsation in stages of electric submersible pump at shut-off under various speeds 被引量:1
2
作者 DHANASEKARAN Arumugam KUMARASWAMY Sivasailam 《排灌机械工程学报》 EI CSCD 北大核心 2020年第7期649-657,共9页
Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the li... Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages. 展开更多
关键词 electric submersible pump shut-off STAGE pressure pulsation variable frequency
下载PDF
Intelligent Identification of Rotating Stall for Centrifugal Compressor Based on Pressure Pulsation Signals and SDKAE Network
3
作者 Hongkun Li Jiayu Ou +2 位作者 Xinwei Zhao Hongwei Cao Daitong Wei 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期169-175,共7页
Most accidents of centrifugal compressors are caused by fluid pulsation or unsteady fluid excitation.Rotating stall,as an unstable flow phenomenon in the compressor,is a difficult point in the field of fluid machinery... Most accidents of centrifugal compressors are caused by fluid pulsation or unsteady fluid excitation.Rotating stall,as an unstable flow phenomenon in the compressor,is a difficult point in the field of fluid machinery research.In this paper,a stack denoising kernel autoencoder neural network method is proposed to study the early warning of rotating stall in a centrifugal compressor.By collecting the pressure pulsation signals of the centrifugal compressor under different flow rates in engineering practice,a double hidden layer sparse denoising autoencoder neural network is constructed.According to the output labels of the network,it can be judged whether the rotation stall occurs.At the same time,the Gaussian kernel is used to optimize the loss function of the whole neural network to improve the signal feature learning ability of the network.From the experimental results,it can be seen that the flow state of the centrifugal compressor is accurately judged,and the rotation stall early warning of the centrifugal compressor at different speeds is realized,which lays a foundation for the research of intelligent operation and maintenance of the centrifugal compressor. 展开更多
关键词 centrifugal compressor deep learning pressure pulsation signal rotating stall
下载PDF
Experimental study on effects of air injection on cavitation pressure pulsation and vibration in a centrifugal pump with inducer
4
作者 Yan-hong Mao Hou-lin Liu +2 位作者 Yong Wang Jie Chen Fei Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第6期1168-1178,共11页
Cavitation commonly induces performance deterioration and system vibration in many engineering applications.This paper aims to investigate the effects of air injection on cavitation evolution,pressure pulsation and vi... Cavitation commonly induces performance deterioration and system vibration in many engineering applications.This paper aims to investigate the effects of air injection on cavitation evolution,pressure pulsation and vibration in a centrifugal pump with inducer.In this paper,the high-speed camera is used to capture the gas flow pattern and cavitation evolution process in the inducer.The impacts of air injection on the inlet pressure pulsation and vibration are also investigated.The results show that the cavitation development in the inducer undergoes four patterns:incipient cavitation,sheet cavitation,cloud cavitation and super cavitation.During the development of cavitation,the main frequency of the pressure pulsation shifts to lower frequencies,and the amplitude of the vibration increases.In addition,air injection promotes the incipient cavitation but delays the cavitation development.A small amount of air can effectively decrease amplitudes of pressure pulsation and vibration.But as the air content increases,the fluctuations and amplitudes of pressure pulsation and vibration increase. 展开更多
关键词 Air injection cavitation control INDUCER VIBRATION pressure pulsation
原文传递
Correlation Research between Turbulent Pressure Pulsation and Internal Sound Field Characteristics of Centrifugal Pump 被引量:5
5
作者 CHENG Xiaorui WANG Peng ZHANG Shuyan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期100-110,共11页
In order to study the correlation between the internal flow noise of the centrifugal pump and the turbulent pressure pulsation,a single-stage single-suction centrifugal pump was used as the research object by the comb... In order to study the correlation between the internal flow noise of the centrifugal pump and the turbulent pressure pulsation,a single-stage single-suction centrifugal pump was used as the research object by the combination of numerical calculation and experiment.Based on the RNG k-?model and the N-S equation,the model pump was simulated numerically by CFD.A dipole sound source was extracted by the turbulent pulse action of the volute wall surface according to the FW-H equation.The acoustic field of the model pump was solved on the basis of the boundary element method,and the sound pressure distribution of the internal flow field under the action of the dipole sound source of the volute wall and the frequency response of the inlet and outlet fields were obtained.The results show that the distribution of hydrodynamic noise inside the centrifugal pump is related to the pressure pulsation,presenting obvious dipole distribution and disturbance at the tongue.The sound pressure value of the field is mainly concentrated in the blade passing frequency and double frequency,in which the blade passing frequency is the strongest,and the sound pressure value decreases obviously under other double frequency.The main frequency of hydrodynamic noise is the blade passing frequency. 展开更多
关键词 centrifugal pump pressure pulsation internal sound field noise FREQUENCY SIMULATION
原文传递
Effect of the volute tongue cut on pressure pulsations of a low specific speed centrifugal pump 被引量:3
6
作者 Ning Zhang Bo Gao +1 位作者 Bin Xia Qi-feng Jiang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第4期758-770,共13页
The volute tongue,as the crucial component inducing rotor-stator interaction,is detrimental to unsteady pressure pulsations of centrifugal pumps.In the present paper,to investigate the effect of the volute tongue cut ... The volute tongue,as the crucial component inducing rotor-stator interaction,is detrimental to unsteady pressure pulsations of centrifugal pumps.In the present paper,to investigate the effect of the volute tongue cut on pressure pulsations of a low specific speed centrifugal pump,three volute tongues are obtained through twice cuts,named cases 1,2,3.Twenty measuring points are evenly mounted on periphery of the volute casing to obtain unsteady pressure signals using high response transducers.Pressure amplitudes at the blade passing frequency fBPF and root mean square(rms)values in 0 Hz-500 Hz frequency band are applied to evaluate the cutting effect.Results show that pressure spectrum is significantly affected by the volute tongue cut,especially for the component at fBPF.For different measuring points,influences of the volute tongue cut on three cases are not identical.From nns values,it is evident that cutting the volute tongue will lead to pressure energy increasing for most of the concerned measuring points,especially for the points at the far away region from the volute tongue.Finally,from comparison with the original shape case 1,the averaged increment of the twenty points is more than 20%.So it is concluded that for this type centrifugal pump,cutting the volute tongue is not reasonable considering low pressure pulsation requirement. 展开更多
关键词 Centrifugal pump volute tongue cut pressure pulsation spectrum analysis
原文传递
Influence of specific speed on hydraulic performances and pressure fluctuations in mixed-flow pumps
7
作者 FU Yanxia JIA Qi +1 位作者 SHEN Yang PACE Giovanni 《排灌机械工程学报》 CSCD 北大核心 2023年第10期981-987,共7页
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ... A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design. 展开更多
关键词 mixed-flow pumps impeller specific speed hydraulic performance pressure pulsation numerical simulation EXPERIMENT
下载PDF
Influence of impulse waves generated by rocky landslides on the pressure exerted on bank slopes
8
作者 CAO Ting WANG Ping-yi +1 位作者 QIU Zhen-feng REN Jing-xuan 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1159-1176,共18页
Rocky landslides on river banks can result in the generation of ultra-high waves,which may destroy structures on the opposite bank.Existing methods to calculate the pressure on bank slopes under the effect of impulse ... Rocky landslides on river banks can result in the generation of ultra-high waves,which may destroy structures on the opposite bank.Existing methods to calculate the pressure on bank slopes under the effect of impulse waves generated by landslides are,however,few and of low precision.Therefore,in this study,a three-dimensional physical model test was conducted by taking into account factors such as landslide geometry parameters and the bank slope angle.The model test section was generalized on the basis of a certain section of the Three Gorges reservoir area as a prototype,after which the wave parameters and wave pressure acting on the bank slope were measured.Subsequently,the magnitude,acting point,and distribution of the pressure of the impulse waves generated by the rocky landslide upon the bank slope were determined.The distribution curve of the impact pressure was similar to that calculated using theСНиПⅡ57-75 formula,and the experimental pulsating pressure value was close to the value calculated using the Subgrade formula.Based on the test results,a power function of the relative pulsating pressure steepness with respect to the reciprocal of the wave steepness,relative water depth,and slope ratio was proposed.The acting point of the maximum pulsating pressure was found to be located near the still water level.Finally,an empirical formula for calculating the envelope of the maximum pulsating pressure distribution curve was proposed.These formulas can serve as a theoretical basis for the prediction of impulse wave pressure generated owing to landslides on bank slopes. 展开更多
关键词 Rocky landslide Impact pressure Pulsating pressure Wave pressure steepness Distribution curve
下载PDF
Vibration and Sound Radiation of Cylindrical Shell Covered with a Skin Made of Micro Floating Raft Arrays Excited by Turbulence
9
作者 Dan Zhao Qiong Wu +5 位作者 Minyao Gan Ke Li Wenhong Ma Qun Wu Liqiang Dong Shaogang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2041-2055,共15页
To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli... To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells. 展开更多
关键词 Finite cylindrical shell vibration and sound radiation noise reduction turbulent pulsating pressure micro floating raft
下载PDF
Response characteristics of plunge pool slabs of Xiaxiluodu Hydropower deformation conditions
10
作者 Jie Yuan Qianwei Xi +2 位作者 Xin Jia Yang Zhou Yu Hu 《Earthquake Research Advances》 CSCD 2022年第4期28-38,共11页
The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab.As the protection structure of the underwater bed,th... The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab.As the protection structure of the underwater bed,the plunge pool slab bears the continuous impact of high-speed water flow.The hourly average dynamic water pressure on the slab is one of the main loads directly affecting the stability of the slab and is the main factor causing its erosion destruction.After the impoundment of the Xiluodu Hydropower Station,the measuring line of valley width in the plunge pool area has been continuously shrinking.By 2020,the cumulative shrinking value is about 80 mm.In light of the general background condition of valley shrinkage,daily inspection,annual detailed inspection,underwater inspection and drainage inspection of the plunge pool found that the plunge pool has experienced different degrees of damage,which greatly influences the long-term safety stability of the plunge pool.In this paper,the prototype observation data of flood discharge is used as the input load of pulsatingpressure,and the stress and displacement distribution of the plunge pool structure under the vibration load of flood discharge is analyzed under the condition that the stress and strain state of the plunge pool is changed under the influence of valley displacement.The results show that the stress,strain,and displacement distribution of the plunge pool are mainly caused by valley deformation,the vibration caused by flood discharge is little in influence,and the impact effect of deep hole flood discharge tongue on the plunge pool slab is weak. 展开更多
关键词 Valley deformation Plunge pool Flood discharge pulsating pressure Finite element
下载PDF
Estimating water distribution of the rotating sprinkler with pulsating pressure on sloping land
11
作者 Boyang Fu Yu Huang Lin Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第2期39-47,共9页
Pulsating pressure plays an important role in improving the poor irrigation quality and the uneven water distribution caused by the terrain slope.Water distribution is one of the key factors in design of the sprinkler... Pulsating pressure plays an important role in improving the poor irrigation quality and the uneven water distribution caused by the terrain slope.Water distribution is one of the key factors in design of the sprinkler irrigation system,however,it is difficult to measure in practice.To provide appropriate technical parameters for the design of sprinkler irrigation system with pulsating pressure on sloping land,a mathematical model was established according to the water conservation principle and finite element idea,and its accuracy was experimentally verified.The model was applied to study the effects of terrain slope,sprinkler arrangement,sprinkler spacing and average pulsating pressure on water distribution on sloping land.The results showed that the water distribution was more favorable under the gentle terrain slope,when slope decreased from 25%to 5%,the uniformity increased from 74.47%to 86.22%.Sprinklers arranged in equilateral triangle and with the spacing close to R_(0)had the best water distribution uniformity,the uniformity coefficient(CU)of which was 11.43%and 8.75%higher than that in square and rectangular arrangement,respectively.The CU increased with the increase of the average pulsating pressure.However,the effect of increasing water pressure on promoting the uniformity of water distribution gradually decreases.Therefore,when using the Rainbird R5000 sprinkler on sloping land with pulsating pressure,it is suggested that the sprinkler irrigation systems should be arranged below the terrain slope of 20%,and operated at the average pulsating pressure of 300 kPa.The suitable sprinkler arrangement is the equilateral triangle,and with the spacing of 0.8R_(0)to 1.0R_(0). 展开更多
关键词 sprinkler irrigation water distribution on sloping land estimation model pulsating pressure
原文传递
Pressure Pulse Response of High Temperature Molten Salt Check Valve Hit by Crystal Particles
12
作者 李树勋 沈恒云 +2 位作者 刘斌才 胡迎港 马廷前 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期271-279,共9页
In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when ... In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when the valve openings are 20%,60%and 100%respectively.The molten salt fow may be changed under strict conditions and produce forced vibration of the inner parts of molten salt particle shock valve body.Euler two-phase flow model is used for different molten salt sizes to extract temporal pressure pulse information and conduct statistical data processing analysis.The influence of the molten salt crystallization of molten salt particles on the fow and pressure pulse strength is analyzed.The results show that the crystallization of molten salt has a serious impact on the vibration of the valve body,especially in the throttle rate.The valve oscillation caused by the pressure pulsation mostly occurs from the small opening rate.As the opening increases,the pressure pulse threshold and its change trend decrease. 展开更多
关键词 molten salt valve numerical simulation pressure pulsation two-phase flow crystal frozen blocking
原文传递
Experimental study of the flow field of a high head model pump turbine based on PIV technique 被引量:5
13
作者 De-min Liu Wei-lin Xu Yong-zhi Zhao 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第5期1045-1055,共11页
Pumped storage units are the main parts in China’s power construction,as a hot issue concerned by the industry.The pump turbine involves the two-way flows and a multiple condition operation,and its operation flow pat... Pumped storage units are the main parts in China’s power construction,as a hot issue concerned by the industry.The pump turbine involves the two-way flows and a multiple condition operation,and its operation flow pattern is very complex.The particle image velocimetry(PIV)is a very effective test technique to determine the internal flow field of pump turbines.This paper discusses the key problems of the pump turbine,based on the PIV experiments under typical conditions of the pump turbine,especially for problems such as the S-shape problem,the hump problem,the pressure fluctuation problem and the cavitation problem.In the internal flow fields under typical conditions are determined.The vortices induced and their development are observed in the PTV test.The flow phenomenon is shown at each operating point.The typical problems of the pump turbine are closely related to the vortex distribution in the internal flow field.From the PIV test results under several working conditions and from the comparisons between the optimal condition and the part load condition,it is seen that the vortex distributions are very different.Vortices at the vane-less area between the guide vane and the runner are closely related to the strong pressure pulsation,the first hump and the S-shape curve.From the PIV results of the cavitation working points,it is seen that the flow angle is changed in the vane-less region and the runner leading edge because of the cavitation bubbles and that the flow angle deviates from the optimal setting angle.From the computational fluid dynamics(CFD)result of the second hump working points,it is concluded that the vortex shedding on the runner leading edge is the main cause of the second hump. 展开更多
关键词 Pump turbine particle image velocimetry(PIV) pressure pulsation pump hump CAVITATION four quadrants curve
原文传递
An experimental investigation of transient cavitation control on a hydrofoil using hemispherical vortex generators 被引量:3
14
作者 Ebrahim Kadivar Takaho Ochiai +1 位作者 Yuka Iga Ould el Moctar 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第6期1139-1147,共9页
Unsteady cavitation causes noise,damage,and performance decline in the marine engineering and fluid machinery systems.Therefore,finding a method to control the cavitation and its destructive effects is important for t... Unsteady cavitation causes noise,damage,and performance decline in the marine engineering and fluid machinery systems.Therefore,finding a method to control the cavitation and its destructive effects is important for the industrial applications.In this work,we proposed a passive method to control the unsteady behavior of transient cavitation at the medium Reynolds number.For this aim,we performed an experimental study using a high-speed camera to analyze the effects of hemispherical vortex generators(VGs)on the cavitation dynamics around a hydrofoil surface.In addition,the pressure pulsations induced by the collapse of the cavity structures in the wake region of the hydrofoil were captured with a pressure transducer mounted on the wall downstream of the hydrofoil.The results showed that the instability behaviors of the cavity structures on the hydrofoil were mitigated using the proposed cavitation passive control method.In addition,the pressure pulsations in the wake region of the hydrofoil were reduced significantly.It can be concluded that the suppression of cavitation instabilities can improve the operating life and reliability of the marine and hydraulic systems. 展开更多
关键词 Hydrodynamic cavitation cavitation passive control hemispherical vortex generators pressure pulsations high speed observation
原文传递
Study of Unforced Unsteadiness in Centrifugal Pump at Partial Flow Rates 被引量:4
15
作者 YANG Jun XIE Tian +2 位作者 LIU Xiaohua SI Qiaorui LIU Jun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期88-99,共12页
In order to explore the unforced unsteadiness of centrifugal pumps,a 2-D frequency domain imaging display technology was used to study the development of these unsteady flow structures at partial flow conditions.The r... In order to explore the unforced unsteadiness of centrifugal pumps,a 2-D frequency domain imaging display technology was used to study the development of these unsteady flow structures at partial flow conditions.The results showed that,the unsteady flow field was not only affected by rotor and stator interaction,but also appeared an unforced unsteadiness with fundamental frequency of St≈0.23 around the impeller throat area.Moreover,as the flow rates decreased,this unsteady flow structure gradually weakened and disappeared.When the flow rate was reduced to 0.6 times of design flow rate,another two unforced unsteady flow structures with characteristic frequencies of St≈0.0714 and St≈0.12 began to appear in the same area.Therefore,with the operating condition smaller than design flow rate,the internal flow became more and more complex.In addition to the forced unsteadiness,the unforced unsteadiness which is not connected with the blade passage frequency became more and more obvious. 展开更多
关键词 centrifugal pumps partial flow conditions pressure pulsations unforced unsteadiness 2-D frequency domain visualization method
原文传递
Analysis and Optimization of Unsteady Flow in a Double-Suction Centrifugal Pump for a Cooling-Water Supply System in a Nuclear Reactor
16
作者 YAN Hao SU Xiaozhen +2 位作者 SHI Haixia CHENG Maosheng LI Yunqing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1606-1616,共11页
The management of a cooling-water supply system in a nuclear reactor is performed by valve and reactor coolant pump(RCP)control,which regulates both the pressure and the discharge between certain limits.However,the RC... The management of a cooling-water supply system in a nuclear reactor is performed by valve and reactor coolant pump(RCP)control,which regulates both the pressure and the discharge between certain limits.However,the RCP has a significant unsteady flow when operating at different conditions.The unsteady pressure pulsation and radial force vector are difficult to calculate because these are affected by the transient properties of the unsteady flow.This study explores the use of a commercial Computational Fluid Dynamics(CFD)code to comprehensively estimate the unsteady flow of the RCP.The full 3D-URANS equations were solved for different flow rates,and some optimised cases for the unsteady flow were proposed.The results showed that the numerical predictions were validated with the experimental data of a model pump.The code was used to estimate the velocity streamlines,pressure pulsation and radial force vector in the steady and transient conditions.The flow rates were not equal for the inner and outer passage in the double volute casing.Additionally,the pulsation of the pressure and radial force was effectively reduced by optimising the staggered angleα.An optimal case was observed whenα=30°. 展开更多
关键词 unsteady flow reactor coolant pump(RCP) radial force pressure pulsation
原文传递
Flow excitation mechanisms of unbalanced impeller forces after pump power-trip of ultra-high head pump-turbines
17
作者 FU XiaoLong LI DeYou +3 位作者 LV JingWei YANG Biao WANG HongJie WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS 2024年第5期1602-1611,共10页
To elucidate the dynamic mechanisms of unbalanced impellers in ultra-high head pump-turbines(PTs),this study employed a one-and three-dimensional coupled method to simulate the pump power-trip(PPT)process of an ultra-... To elucidate the dynamic mechanisms of unbalanced impellers in ultra-high head pump-turbines(PTs),this study employed a one-and three-dimensional coupled method to simulate the pump power-trip(PPT)process of an ultra-high head PT.The investigation revealed two novel pulsation frequency components,denoted as fDVand fINFT,associated with impeller forces.The pulsation intensities of these components were markedly higher than those of rotor-stator interaction frequency components in ultra-high head PTs.Notably,the fDVcomponents exhibited pulsations at 1–2 times the rated rotation frequency of the impeller,spanning the entire transition period.Meanwhile,the fINFTcomponents constituted a complex frequency band with various frequency values,primarily occurring near conditions(Q=0,n=0,M=0,and d M/dt=0).These two pulsation frequency components were predominantly linked to the unsteady evolution of dean vortices inside the volute and complex transitions of the flow pattern within the impeller,respectively.It is crucial to note that these unbalanced flow-induced impeller axial forces can elevate the risk of accidents where the rotor is subjected to significant upwind axial forces.These findings offer valuable insights into mitigating the risk of rotor lifting due to axial forces during PT events in ultra-high head PTs. 展开更多
关键词 ultra-high head pump-turbine pump power-trip unbalanced impeller forces pressure pulsations flow pattern transitions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部