期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Electric-controlled pressure relief valve for enhanced safety in liquid-cooled lithium-ion battery packs
1
作者 Yuhang Song Jidong Hou +6 位作者 Nawei Lyu Xinyuan Luo Jingxuan Ma Shuwen Chen Peihao Wu Xin Jiang Yang Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期98-109,I0004,共13页
The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above... The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief. 展开更多
关键词 pressure relief valve Liquid-cooled battery pack Explosion Flacs
下载PDF
Mechanical analysis of effective pressure relief protection range of upper protective seam mining 被引量:10
2
作者 Yin Wei Miao Xiexing +1 位作者 Zhang Jixiong Zhong Sijian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期537-543,共7页
This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the develo... This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation. 展开更多
关键词 Upper protective seam Principle of pressure relief Effective protection range Gas pressure
下载PDF
Optimum location of surface wells for remote pressure relief coalbed methane drainage in mining areas 被引量:9
3
作者 HUANG, Huazhou SANG, Shuxun +3 位作者 FANG, Liangcai LI, Guojun XU, Hongjie REN, Bo 《Mining Science and Technology》 EI CAS 2010年第2期230-237,共8页
Based on engineering tests in the Huainan coal mining area,we studied alternative well location to improve the performance of surface wells for remote pressure relief of coalbed methane in mining areas.The key factors... Based on engineering tests in the Huainan coal mining area,we studied alternative well location to improve the performance of surface wells for remote pressure relief of coalbed methane in mining areas.The key factors,affecting location and well gas production were analyzed by simulation tests for similar material.The exploitation results indicate that wells located in various positions on panels could achieve relatively better gas production in regions with thin Cenozoic layers,low mining heights and slow rate of longwall advancement,but their periods of gas production lasted less than 230 days,as opposed to wells in regions with thick Cenozoic layers,greater mining heights and fast rates of longwall advancement.Wells near panel margins achieved relatively better gas production and lasted longer than centerline wells.The rules of development of mining fractures in strata over panels control gas production of surface wells.Mining fractures located in areas determined by lines of compaction and the effect of mining are well developed and can be maintained for long periods of time.Placing the well at the end of panels and on the updip return airway side of panels,determined by lines of compaction and the effect of mining,would result in surface wells for remote pressure relief CBM obtaining their longest gas production periods and highest cumulative gas production. 展开更多
关键词 pressure relief coalbed methane surface wells well location Huainan coal mining area
下载PDF
Pressure relief of underground ammunition storage under missile accidental ignition
4
作者 Ya-wei Wang Yu-zhuo Yang +2 位作者 Gao-wan Zou Hui Dong Yan Huo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1081-1093,共13页
Safety of underground ammunition storage is an important issue,especially during the accidental ignition of missiles.This work investigates the pressure and temperature distribution of the multi-layer underground ammu... Safety of underground ammunition storage is an important issue,especially during the accidental ignition of missiles.This work investigates the pressure and temperature distribution of the multi-layer underground ammunition storage with a pressure relief duct during the accidental ignition process of the missile.A large-scale experiment was carried out using a multi-layered restricted space with a pressure relief duct to simulate the underground ammunition store and a solid rocket motor to simulate the accidental ignition of the missile.The results show that when the motor gas mass flow increased by5.6 times,the maximum pressure of the ammunition storage increased by 5.87 times.At a certain motor flow rate,when the pressure relief exhaust area at the end of the relief duct was reduced by 1/2,the maximum pressure on the first layer did not change.But the rate of pressure relief was reduced and the time delayed for the pressure of ammunition store to drop to zero.In this experiment,when the motor ignition position was located in to the third layer ammunition chamber,the maximum pressure was reduced by 32.9%and also reduced the rate of change of pressure.In addition,for the experimental conditions,the theoretical analysis of the pressure relief of the ammunition storage is given by a simplified model.Based on the findings,some suggestions to the safety protection design of ammunition store are proposed. 展开更多
关键词 Underground ammunition storage pressure relief Large-scale experiment Missile accidental ignition
下载PDF
Simulating Error-Opening of Pressure Relief Valves of a Station on a Continuous Undulating Oil Pipeline with Large Elevation Difference
5
作者 Xiaohua Chen Caifu Lan +3 位作者 Honghao Zheng Wang Li Chao Zhao Wenjun Dang 《Energy Engineering》 EI 2022年第4期1439-1452,共14页
For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-ove... For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station. 展开更多
关键词 Continuous undulating oil pipeline large elevation difference pressure relief system error-opening oil dis-charge improvement measure
下载PDF
Pressure Control of a Large-scale Hydraulic Power Unit Using π Bridge Network 被引量:3
6
作者 FENG Bin GONG Guofang YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期386-391,共6页
The steady state and dynamic characteristics of pressure output of a hydraulic power unit are important to the hydraulic system behavior.Because of the compact structure,the B-half bridge resistance network is widely ... The steady state and dynamic characteristics of pressure output of a hydraulic power unit are important to the hydraulic system behavior.Because of the compact structure,the B-half bridge resistance network is widely used in the pilot controlled pressure relief valves.However the steady-state pressure error might be unacceptably big in those pressure control systems.A constant pressure power unit is typically assumed in analysis of steady state and dynamic behavior of hydraulic systems.The flow-pressure relationship seems to be much complex,in particular when big flow variation takes place.In this paper,the π bridge hydraulic resistance network pilot stage is designed in order to get better flow-pressure characteristics.Based on the similarity of electrical circuits,the main factors influencing flow-pressure characteristics are analyzed.Moreover,the optimum diameters of both constant hydraulic resistor and dynamic resistor are proposed.Flow-pressure characteristics are compared with different constant hydraulic resistors,dynamic resistor and spring stiffness by simulations and experiments.Results of simulations and experiments show that flow-pressure characteristics depend very little on the spring stiffness in whole flow range.Good controlled pressure characteristics can be achieved with suitable constant resistors.Overshoot can be reduced with the small diameter of the dynamic resistor.Flow-pressure characteristics of pressure relief valve can be improved with a π bridge pilot stage.The proposed pressure control method will provide some positive guidelines and be helpful to design a high performance hydraulic system with large flow. 展开更多
关键词 two stage pressure relief valve π bridge resistor network flow-pressure characteristics
下载PDF
PRESSURE COMPENSATION METHOD OF UNDERWATER HYDRAULIC SYSTEM WITH HYDRAULIC POWER UNIT BEING UNDER ATMOSPHERIC CIRCUMSTANCE AND PRESSURE COMPENSATED VALVE 被引量:2
7
作者 Wang Qingfeng Li Yanmin Zhong Tianyu Xu Guohua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期419-423,共5页
Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumst... Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation. 展开更多
关键词 Underwater hydraulic system (UHS) pressure compensation Underwater ambient pressure (UAP) pressure relief valve
下载PDF
Study on "fracturing-sealing" integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability 被引量:10
8
作者 Zhang Chao Lin Baiquan +2 位作者 Zhou Yan Zhai Cheng Zhu Chuanjie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期841-846,共6页
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305... To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability. 展开更多
关键词 Coal gas High-energy gas fracturing "Fracturing-sealing" integration pressure relief and permeability increase Gas extraction
下载PDF
Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China 被引量:17
9
作者 Yong Zhao Pengfei Li Siming Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第6期468-477,共10页
Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in ex... Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing. 展开更多
关键词 Tunnel engineering Unfavorable geological regions Water inrush and mud gushing pressure relief technology Advance grouting technology Advance jet grouting
下载PDF
Determining the rational layout parameters of the lateral high drainage roadway serving for two adjacent working faces 被引量:2
10
作者 Li Shugang Shuang Haiqing Wang Hongsheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期795-801,共7页
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden ... To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable. 展开更多
关键词 Lateral high drainage roadway(LHDR) One gateway with two utilizations Working face overburden pressure relief gas Surrounding rock’s stability
下载PDF
Key Technology of Ground Grouting Treatment for Inclined Shaft under Condition of Super Thick Water-Rich Loose Layer
11
作者 Yang Yang 《Open Journal of Geology》 CAS 2022年第12期1120-1130,共11页
Shaft is one of the important links of mine production. In recent years, wellbore deviation has occurred many times in various regions of China, especially under the condition of thick water-rich loose layer, wellbore... Shaft is one of the important links of mine production. In recent years, wellbore deviation has occurred many times in various regions of China, especially under the condition of thick water-rich loose layer, wellbore deviation has become an important factor that seriously affects the safety of mine production and miners’ life. Taking the serious deviation of shaft in Guotun Coal Mine in Shandong Province as an example, this paper analyzes the causes of wellbore deviation from the aspects of wellbore geological conditions and wellbore construction methods, and grouting treatment engineering carried out on the deviated shaft under the condition of mine production. Through on-site grouting construction, repair and treatment are remarkable, which provides reference for the subsequent surface grouting treatment engineering of wellbore deviation. 展开更多
关键词 Wellbore Deviation Water pressure GROUTING pressure relief
下载PDF
Gas Drainage Technology in Fully Mechanized Caving Face with Horizontal Sublevel Mining in Steep and Extra-Thick Coal Seam
12
作者 Bingxing Sun 《Open Journal of Geology》 2020年第9期957-970,共14页
This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pr... This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle. 展开更多
关键词 Steeply Inclined Extra Thick Seam Horizontal Segmentation Top Coal Caving The Source of the Gas pressure relief Gas Drainage
下载PDF
Comparative Analysis of the Distribution Characteristics of Floor Stress Field between Gob-Side Entry Retaining with Roof Cutting and Conventional Mining
13
作者 Weifeng Xue Chaoyang Liu +3 位作者 Chao Li Yongguang Chen Xiaoping Xi Feng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期17-28,共12页
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ... All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). 展开更多
关键词 Roof Cutting and pressure relief Gob-Side Entry Retaining Floor Stress Field Stress Concentration
下载PDF
Concentration Mechanism of Ore-Forming Fluid in Huize Lead-Zinc Deposits,Yunnan Province 被引量:1
14
作者 ZhangZhenliang HuangZhilong +2 位作者 RaoBing GuanTao YanZaifei 《Journal of China University of Geosciences》 SCIE CSCD 2005年第2期152-159,共8页
The Huize Pb-Zn deposits of Yunnan Province, located in the south-central part of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn multimetal mineralization district (MMD), are strictly controlled by fault zones. The sources of... The Huize Pb-Zn deposits of Yunnan Province, located in the south-central part of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn multimetal mineralization district (MMD), are strictly controlled by fault zones. The sources of ore-forming fluid in the deposits have been debated for a long time. Calcite, a gangue mineral, has uniform C and O isotopes. The δ~13C_PDB and δ~18O_SMOW values vary respectively from -2.1×10^-3 to -3.5×10^-3 (mean -2.8×10^-3) and 16.7×10^-3-18.6×10^-3 (mean 17.7×10^-3). No obvious difference can be found in C and O isotopes among occurrences and elevations and even ore-bodies. Types of inclusions include those of pure liquid (L), liquid-rich gas-liquid (L+V), and three-phase ones containing a daughter mineral (S+L+V) and immiscible CO_2 with three-phases (V_CO_2+L_CO_2+L_H_2O). Their homogenization temperatures vary from 110 to 400 ℃, and two peaks are shown. (~87Sr/~86Sr)_0 ratios of calcite in the deposits are higher than those in the mantle and Emeishan basalts, and slightly higher than those in the Baizuo Formation, which the Huize lead-zinc deposits are found in. All of the (~87Sr/~86Sr)_0 are low relative to those in the basement rocks. Fractionation of Sr isotope did not occur in the ore-forming fluid during the precipitation of minerals. The results indicate that the ore-forming fluid is homogeneous and derived from the mixing of different fluids. Gas-liquid inclusions can be separated into two groups in 300-400 ℃ with a salinity of 5 %-6 % and 12 %-16 % NaCl respectively. However, the salinities of inclusions vary from 7 % to 23 % NaCl in 100-300 ℃, especially in 150-250 ℃. The formation pressures of faulted zones are (50-320)×105 Pa. The estimated pressures of the overlying rocks on the ore bodies are 574×105-640×105 Pa. The pressures of ore-forming processes would be 145×105 to 754×105 Pa. Therefore, pressure sharply reduced and boiling occurred when the ore-forming fluid flew into the fault zones. As a result, the ore-forming fluid was highly concentrated, and metallic minerals began to precipitate from the fluid on a great scale. The high-grade lead-zinc deposits were formed when the fluid was under saturation or over-saturation conditions. 展开更多
关键词 fluids mixing BOILING relief of pressure high grade
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部