期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Safe retaining pressures for pressurized tunnel face using nonlinear failure criterion and reliability theory 被引量:7
1
作者 杨小礼 姚聪 张佳华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期708-720,共13页
Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stabili... Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering. 展开更多
关键词 TUNNEL limit analysis nonlinear failure criterion pore water pressure retaining pressure
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
2
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 Active earth pressure Seepage Anisotropic permeability retaining wall Fourier series expansion Cohesionless soils
下载PDF
Calculation of passive earth pressure of cohesive soil based on Culmann's method
3
作者 Hai-feng LU Bao-yuan YUAN 《Water Science and Engineering》 EI CAS 2011年第1期101-109,共9页
Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influence... Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex. 展开更多
关键词 Coluomb earth pressure theory Culmann's graphical construction retaining wall passive earth pressure cohesive soil
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部