The thermal hydraulic (TH) behavior of coo- lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal sh...The thermal hydraulic (TH) behavior of coo- lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.展开更多
The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf),...The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf), focused on thermal mixing processes in the cold leg and the downcomer of two-phase PTS case. Present work reports CFD (computational fluid dynamics) ana|ysis of steady-state air-water case. CFD analysis was conducted with two turbulence-modeling approaches, RANS (Reynolds Averaged Navier-stokes) and LES (large eddy simulations). Multiphase situation was modeled with VOF (volume of fluid) approach. Simulations were performed using the FLUENT 12 package. Comparison of computed temperatures results and measurements along the thermo-couple lines revealed results depend on the turbulence model used.展开更多
文摘The thermal hydraulic (TH) behavior of coo- lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.
文摘The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf), focused on thermal mixing processes in the cold leg and the downcomer of two-phase PTS case. Present work reports CFD (computational fluid dynamics) ana|ysis of steady-state air-water case. CFD analysis was conducted with two turbulence-modeling approaches, RANS (Reynolds Averaged Navier-stokes) and LES (large eddy simulations). Multiphase situation was modeled with VOF (volume of fluid) approach. Simulations were performed using the FLUENT 12 package. Comparison of computed temperatures results and measurements along the thermo-couple lines revealed results depend on the turbulence model used.