The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse ...The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse transformation behavior of the TiNi alloy wire. A single peak appears on the DSC curves of wires prestrained at 253-313K (in the martensite state). However deformed at 333K, three consecutive peaks appear on the DSC curves of wires with a smaller prestrain and a single peak appears on the DSC curves of the wires with a larger prestrain. The recovery strain ratio of the wires prestrained at 253-313K are very similar. However, the ratio of the wire predeformed at 333K is obviously smaller than that of the wire prestrained in the martensite state.展开更多
This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on spr...This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are in- vestigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simula- tion technique in conjunction with the Latin hypercube sam- pling method was adopted to study the probabilistic spring- back. Finite element method based on implicit/explicit al- gorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler al- gorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reli- ability functions based on geometry compensations.展开更多
The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is...The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.展开更多
The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau...The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.展开更多
In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density ...In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density of HTPB coating at different aging stages were tested using low-field^1 H NMR and the variation of cross-linking density was analyzed.The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established.The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient.Combined with uniaxial tensile test results,a prestrain aging constitutive model of HTPB coating was established.The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain.Under prestrain conditions,the crosslinking density of HTPB coating decreases at the early stage,and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging.The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R>0.9500 and R>0.9900 respectively,which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.展开更多
In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under va...In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under various torsional prestrained conditions are investigated from both macroscopic and microscopic points of very slight as contrasted with tensile damage;(2)after torsional prestraining,both yielding strength and ultimate tensile strength become higher for 20 steel and lower for 40Cr steel;(3)when the torsional prestrain exceeds a critical value,that is about 70% of pure torsional shear fracture strain,the ductile-brittle transition of tensile fracture behavior may initiates.Moreover,the advantages and applicable conditions of torsional prestrain strengthening technique are also discussed.展开更多
Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding...Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [展开更多
Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both exp...Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both experimental steels,with increases in the prestrain level,the bake hardening value increases before reaching a maximum point,and then decreases with further increases in the prestrain level. The results of a "bending-baking-secondary bending"test indicate that the secondary bendability deteriorates at a high level of prestrain. The yield strength of the experimental steels was found to increase and the elongation to decrease after high levels of prestrain and bake hardening. Fracture morphology images indicate that a high prestrain level is associated with shallow dimples and more and larger local cleavage areas.展开更多
The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling...The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.展开更多
Paint baking treatment was carried out in a silicon oil bath at 170℃ for 20 min for Si-Al-Mn TRIP Steel sheet with different prestrains, and effect of prestrain on microstructures and properties was studied before an...Paint baking treatment was carried out in a silicon oil bath at 170℃ for 20 min for Si-Al-Mn TRIP Steel sheet with different prestrains, and effect of prestrain on microstructures and properties was studied before and after baking. The results show that with the increasing of prestrain amount during prestraining and baking, the volume fraction of retained austenite decreases, and the volume fraction of martensite and bainite increases as well as yield strength increases; as prestrain ranges from 0 to 4%, the baking-hardening (BH) value increases; while the prestrain ranges from 4% to 16%, the BH value decreases; when the prestrain amount is 4%, the highest BH value is about 70 MPa for Si-Al-Mn TRIP steel sheet with niobium, which displays excellent baking-hardening behavior.展开更多
The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structu...The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structural applications.However,it is still a great challe nge to find the optimal alloy within the numerous candidates.Up to now,the reported nanoprecipitated HEAs are mainly designed by a trialand-error approach with the aid of phase diagram calculations,limiting the development of structural HEAs.In the current work,a novel method is proposed to accelerate the development of ultra-strong nanoprecipitated HEAs.With the guidance of physical metallurgy,the volume fraction of the required nanoprecipitates is designed from a machine learning of big data with thermodynamic foundation while the morphology of precipitates is kinetically tailored by prestrain aging.As a proof-of-principle study,an HEA with superior strength and ductility has been designed and systematically investigated.The newly developed γ’-strengthened HEA exhibits 1.31 GPa yield strength,1.65 GPa ultimate tensile strength,and 15% tensile elongation.Atom probe tomography and transmission electron microscope characterizations reveal the well-controlled high γ’ volume fraction(52%) and refined precipitate size(19 nm).The refinement of nanoprecipitates originates from the accelerated nucleation of the γ’ phase by prestrain aging.A deeper understanding of the excellent mechanical properties is illustrated from the aspect of strengthening mecha nisms.Finally,the versatility of the current design strategy to other precipitation-hardened alloys is discussed.展开更多
Plastic prestraining was applied to a solder interconnect to introduce internal defects such as dislocations in order to investigate the interaction of dislocations with electromigration damage. Above a critical prest...Plastic prestraining was applied to a solder interconnect to introduce internal defects such as dislocations in order to investigate the interaction of dislocations with electromigration damage. Above a critical prestrain, Bi interfacial segregation to the anode, a clear indication of electromigration damage in SnBi solder inter- connect, was effectively prevented. Such an inhibiting effect is apparently contrary to the common notion that dislocations often act as fast diffusion paths. It is suggested that the dislocations introduced by plastic prestraining acted as sinks for vacancies in the early stage of the electromigration process, but as the vacancies accumulated at the dislocations, climb of those dislocations prompted recovery of the deformed samples under current stressing, greatly decreasing the density of dislocation and vacancy in the solder, leading to slower diffusion of Bi atoms.展开更多
In order to uncover the mechanism of elastic modulus degradation during plastic deformation, uniaxial ten- sile test of transformation-induced plasticity (TRIP) steels under different prestrain levels was carried ou...In order to uncover the mechanism of elastic modulus degradation during plastic deformation, uniaxial ten- sile test of transformation-induced plasticity (TRIP) steels under different prestrain levels was carried out. The real elastic modulus unloaded at each prestrain was calculated by linearly fitting. The microstructure evolution with plas-tic strain and the fracture morphology were monitored by using a scanning electron microscope (SEM). Dislocation density and its distribution were detected under a transmission electron microscope (TEM). Microscopic mechanism of the elastic modulus degradation of TRIP steels was discussed in detail. Experimental results indicated that the in- vestigated TRIP600 steel was of severe elastic modulus degradation during plastic deformation. The new-born mar tensite distributed among the retained austenite, resulting in the combination of good ductility and high strength for TRIP steels. It was the change of dislocation movement that induced the variation of atomic binding force and finally led to the variation of elastic modulus.展开更多
Cold-formed steel members,which experience complicated prestrain histories,are frequently applied in structural engineering.This paper aims to predict cyclic plasticity of structural steels with tensile and compressiv...Cold-formed steel members,which experience complicated prestrain histories,are frequently applied in structural engineering.This paper aims to predict cyclic plasticity of structural steels with tensile and compressive prestrain.Monotonic and cyclic tests on hourglass specimens with tensile and compressive prestrain are conducted,and compared with numerical simulations using the Chaboche model.Two approaches are taken in the simulation.The first requires only the monotonic tensile test data from the prestrained steels,and the second requires both the monotonic tensile test data from the virgin steel and the prestrain histories.The first approach slightly overestimates the compressive stress for specimens with tensile prestrain,while the second approach is able to accurately predict the cyclic plasticity in specimens with tensile and compressive prestrain.展开更多
基金This work is funded by the National Natural Science Foundation the Peoples Republic of China (No. 50071037)
文摘The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse transformation behavior of the TiNi alloy wire. A single peak appears on the DSC curves of wires prestrained at 253-313K (in the martensite state). However deformed at 333K, three consecutive peaks appear on the DSC curves of wires with a smaller prestrain and a single peak appears on the DSC curves of the wires with a larger prestrain. The recovery strain ratio of the wires prestrained at 253-313K are very similar. However, the ratio of the wire predeformed at 333K is obviously smaller than that of the wire prestrained in the martensite state.
文摘This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are in- vestigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simula- tion technique in conjunction with the Latin hypercube sam- pling method was adopted to study the probabilistic spring- back. Finite element method based on implicit/explicit al- gorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler al- gorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reli- ability functions based on geometry compensations.
基金Funded by the National Natural Science Foundation of China(No.50071037)
文摘The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.
文摘The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.
基金supported by the National Defense Pre-Research Foundation of China[grant number ZS2015070132A12002]。
文摘In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage,the thermal accelerated aging tests at 0%,3%,6%and 9%prestrains were carried out.The crosslinking density of HTPB coating at different aging stages were tested using low-field^1 H NMR and the variation of cross-linking density was analyzed.The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established.The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient.Combined with uniaxial tensile test results,a prestrain aging constitutive model of HTPB coating was established.The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain.Under prestrain conditions,the crosslinking density of HTPB coating decreases at the early stage,and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging.The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R>0.9500 and R>0.9900 respectively,which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.
文摘In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under various torsional prestrained conditions are investigated from both macroscopic and microscopic points of very slight as contrasted with tensile damage;(2)after torsional prestraining,both yielding strength and ultimate tensile strength become higher for 20 steel and lower for 40Cr steel;(3)when the torsional prestrain exceeds a critical value,that is about 70% of pure torsional shear fracture strain,the ductile-brittle transition of tensile fracture behavior may initiates.Moreover,the advantages and applicable conditions of torsional prestrain strengthening technique are also discussed.
文摘Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [
文摘Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both experimental steels,with increases in the prestrain level,the bake hardening value increases before reaching a maximum point,and then decreases with further increases in the prestrain level. The results of a "bending-baking-secondary bending"test indicate that the secondary bendability deteriorates at a high level of prestrain. The yield strength of the experimental steels was found to increase and the elongation to decrease after high levels of prestrain and bake hardening. Fracture morphology images indicate that a high prestrain level is associated with shallow dimples and more and larger local cleavage areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102107 and 12272113)China National Postdoctoral Program for Innovative Talents(No.BX2021090).
文摘The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.
基金Item Sponsored by National Natural Science Foundation of China(50527402)
文摘Paint baking treatment was carried out in a silicon oil bath at 170℃ for 20 min for Si-Al-Mn TRIP Steel sheet with different prestrains, and effect of prestrain on microstructures and properties was studied before and after baking. The results show that with the increasing of prestrain amount during prestraining and baking, the volume fraction of retained austenite decreases, and the volume fraction of martensite and bainite increases as well as yield strength increases; as prestrain ranges from 0 to 4%, the baking-hardening (BH) value increases; while the prestrain ranges from 4% to 16%, the BH value decreases; when the prestrain amount is 4%, the highest BH value is about 70 MPa for Si-Al-Mn TRIP steel sheet with niobium, which displays excellent baking-hardening behavior.
基金the National Natural Science Foundation of China(ZJW,No.51771149)the Hong Kong Research Grant Council(RGC)(JJK,No.CityU 11212915)。
文摘The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structural applications.However,it is still a great challe nge to find the optimal alloy within the numerous candidates.Up to now,the reported nanoprecipitated HEAs are mainly designed by a trialand-error approach with the aid of phase diagram calculations,limiting the development of structural HEAs.In the current work,a novel method is proposed to accelerate the development of ultra-strong nanoprecipitated HEAs.With the guidance of physical metallurgy,the volume fraction of the required nanoprecipitates is designed from a machine learning of big data with thermodynamic foundation while the morphology of precipitates is kinetically tailored by prestrain aging.As a proof-of-principle study,an HEA with superior strength and ductility has been designed and systematically investigated.The newly developed γ’-strengthened HEA exhibits 1.31 GPa yield strength,1.65 GPa ultimate tensile strength,and 15% tensile elongation.Atom probe tomography and transmission electron microscope characterizations reveal the well-controlled high γ’ volume fraction(52%) and refined precipitate size(19 nm).The refinement of nanoprecipitates originates from the accelerated nucleation of the γ’ phase by prestrain aging.A deeper understanding of the excellent mechanical properties is illustrated from the aspect of strengthening mecha nisms.Finally,the versatility of the current design strategy to other precipitation-hardened alloys is discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 51171191)the National Basic Research Program of China (Grant No. 2010CB631006)the Natural Science Foundation of Liaoning Province, China (Grant No. 20092076)
文摘Plastic prestraining was applied to a solder interconnect to introduce internal defects such as dislocations in order to investigate the interaction of dislocations with electromigration damage. Above a critical prestrain, Bi interfacial segregation to the anode, a clear indication of electromigration damage in SnBi solder inter- connect, was effectively prevented. Such an inhibiting effect is apparently contrary to the common notion that dislocations often act as fast diffusion paths. It is suggested that the dislocations introduced by plastic prestraining acted as sinks for vacancies in the early stage of the electromigration process, but as the vacancies accumulated at the dislocations, climb of those dislocations prompted recovery of the deformed samples under current stressing, greatly decreasing the density of dislocation and vacancy in the solder, leading to slower diffusion of Bi atoms.
基金Sponsored by National Natural Science Foundation of China(51175382)Fundamental Research Funds for Central Universities of China(2011)
文摘In order to uncover the mechanism of elastic modulus degradation during plastic deformation, uniaxial ten- sile test of transformation-induced plasticity (TRIP) steels under different prestrain levels was carried out. The real elastic modulus unloaded at each prestrain was calculated by linearly fitting. The microstructure evolution with plas-tic strain and the fracture morphology were monitored by using a scanning electron microscope (SEM). Dislocation density and its distribution were detected under a transmission electron microscope (TEM). Microscopic mechanism of the elastic modulus degradation of TRIP steels was discussed in detail. Experimental results indicated that the in- vestigated TRIP600 steel was of severe elastic modulus degradation during plastic deformation. The new-born mar tensite distributed among the retained austenite, resulting in the combination of good ductility and high strength for TRIP steels. It was the change of dislocation movement that induced the variation of atomic binding force and finally led to the variation of elastic modulus.
基金The research reported herein was sponsored by the Ministry of Education in Japan under the Grant-in-Aid for Scientific Research(A)No.23246097 with the title“Study on the coupling of buckling and fracture of steel structural members.”This financial support is sincerely acknowledged.
文摘Cold-formed steel members,which experience complicated prestrain histories,are frequently applied in structural engineering.This paper aims to predict cyclic plasticity of structural steels with tensile and compressive prestrain.Monotonic and cyclic tests on hourglass specimens with tensile and compressive prestrain are conducted,and compared with numerical simulations using the Chaboche model.Two approaches are taken in the simulation.The first requires only the monotonic tensile test data from the prestrained steels,and the second requires both the monotonic tensile test data from the virgin steel and the prestrain histories.The first approach slightly overestimates the compressive stress for specimens with tensile prestrain,while the second approach is able to accurately predict the cyclic plasticity in specimens with tensile and compressive prestrain.