A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement ...A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength con...In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.展开更多
In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships ...In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.展开更多
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte...Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.展开更多
A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the...A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.展开更多
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea...In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.展开更多
As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire ...As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire resistance is not considered sufficiently in design criteria for concrete structures in China and other countries at present, numerical analyses were carried out by ANSYS software on unbonded prestressed concrete (UPC) oneway simply-supported and continuous slabs and beams, and bonded PC simply-supported and continuous beams subjected to fire in 186 cases. In the analysis, K, section dimensions and the thickness of concrete cover are regarded as independent variables and some calculation parameters determined by trial and error based on test resuits. Calculation formula for fire endurance of UPC simply-supported and continuous slabs was proposed, and the recommended thicknesses of cover of PC beams and slabs was presented in consideration of the influence of K and section dimensions as well as fire endurance requirements. Comparison analysis of relevant design criterions in China and other countries was performed to verify the rationale of the proposed values.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the freq...Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the frequency of prestressed concrete(PSC)beam increases with the increase in prestressing force approximately.The results are different from the dynamic characteristics of isotropic material beam subjected to compressive axial force which were put forward by Clough et al.The reason is that the beams were considered as isotropic,homogeneous,linear elastic material in the traditional analysis method.However,more accurate results are required in the analysis of frequency of PSC beam.The constitutive mode of PSC member is analyzed based on microstructure of concrete in this paper.The orthotropic linear elastic mode is used to analyze the relation between dynamic frequency and prestressing force of concrete beam,at the same time the equivalent stiffness of prestressed tendon relating to the prestressing force is added to the bending deformation stiffness of the beam.The analytical value agrees well with the test result,indicating that the current analysis method in this paper is feasible to full-prestressed concrete beam.展开更多
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa...The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.展开更多
A method for strengthening concrete structures by prestressed intraply hybrid C/AFRP sheets(composed of aramid fiber and carbon fiber)is proposed,aiming at overcoming shortages of some current strengthening methods.Th...A method for strengthening concrete structures by prestressed intraply hybrid C/AFRP sheets(composed of aramid fiber and carbon fiber)is proposed,aiming at overcoming shortages of some current strengthening methods.The bending capacity of beams strengthened by prestressed intraply hybrid C/AFRP sheets is analysed.The result shows that the bending resistance,the extending performance and the economical efficiency of intraply hybrid fiber sheets are better than those of interlaminar hybrid fiber sheets and single-fiber sheets.Moreover,prestressed intraply hybrid C/AFRP sheets can improve the performance of the strengthened beam,effectively inhibit the expansion of the cracks,and reduce distortion and risk of early failure.展开更多
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
文摘A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
文摘In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.
文摘In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.
基金Funded by the National Science Foundation of China (No. 50808090)
文摘Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.
文摘A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.
基金Sponsored by the National Natural Science Foundation of China(Grant No.5117804251308159+4 种基金51578047)the National High Technology Research and Development Program Project(Grant No.2008AA11Z102)China Railway Corporation Research and Development of Science and Technology Plan Project(Grant No.2014G004-B)China Communications Construction Co.LTD Science and Technology Research and Development Projects(Grant No.2014-ZJKJ-03)
文摘In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50678050)the Outstanding Youth Science Foundation of Heilongjiang Province(Grant No.2001-8)
文摘As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire resistance is not considered sufficiently in design criteria for concrete structures in China and other countries at present, numerical analyses were carried out by ANSYS software on unbonded prestressed concrete (UPC) oneway simply-supported and continuous slabs and beams, and bonded PC simply-supported and continuous beams subjected to fire in 186 cases. In the analysis, K, section dimensions and the thickness of concrete cover are regarded as independent variables and some calculation parameters determined by trial and error based on test resuits. Calculation formula for fire endurance of UPC simply-supported and continuous slabs was proposed, and the recommended thicknesses of cover of PC beams and slabs was presented in consideration of the influence of K and section dimensions as well as fire endurance requirements. Comparison analysis of relevant design criterions in China and other countries was performed to verify the rationale of the proposed values.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.
基金Supported by National Natural Science Foundation of China(No.05378041/E0807)Postdoctoral Foundation of Huazhong Universityof Science and Technology.
文摘Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the frequency of prestressed concrete(PSC)beam increases with the increase in prestressing force approximately.The results are different from the dynamic characteristics of isotropic material beam subjected to compressive axial force which were put forward by Clough et al.The reason is that the beams were considered as isotropic,homogeneous,linear elastic material in the traditional analysis method.However,more accurate results are required in the analysis of frequency of PSC beam.The constitutive mode of PSC member is analyzed based on microstructure of concrete in this paper.The orthotropic linear elastic mode is used to analyze the relation between dynamic frequency and prestressing force of concrete beam,at the same time the equivalent stiffness of prestressed tendon relating to the prestressing force is added to the bending deformation stiffness of the beam.The analytical value agrees well with the test result,indicating that the current analysis method in this paper is feasible to full-prestressed concrete beam.
文摘The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.
基金Supported by the National Natural Science Foundation of China(11272147,10772078)the Priority Academic Porgram Development of Jiangsu Higher Education Institutions+2 种基金the Jiangsu Transportation Research Program Funded Projects(2012Y10)the Suqian Transportation Research Project(SQJTKY2012-09)the Open Foundation of State Key Laboratory of Mechanics and Control Mechanical Structures in Nanjing University of Aeronautics and Astronautics(XQA13007)
文摘A method for strengthening concrete structures by prestressed intraply hybrid C/AFRP sheets(composed of aramid fiber and carbon fiber)is proposed,aiming at overcoming shortages of some current strengthening methods.The bending capacity of beams strengthened by prestressed intraply hybrid C/AFRP sheets is analysed.The result shows that the bending resistance,the extending performance and the economical efficiency of intraply hybrid fiber sheets are better than those of interlaminar hybrid fiber sheets and single-fiber sheets.Moreover,prestressed intraply hybrid C/AFRP sheets can improve the performance of the strengthened beam,effectively inhibit the expansion of the cracks,and reduce distortion and risk of early failure.