Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura...Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.展开更多
Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study...Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.展开更多
Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, ...Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products.展开更多
The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were inv...The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction.展开更多
In this paper, the serpentine channel pouring process for preparing a semi-solid A390 alloy slurry and refining the primary Si grains of the A390 alloy, was used. The effects of the pouring temperature, the cooling wa...In this paper, the serpentine channel pouring process for preparing a semi-solid A390 alloy slurry and refining the primary Si grains of the A390 alloy, was used. The effects of the pouring temperature, the cooling water flow and the number of the curves on the size of the primary Si grains in the semi-solid A390 alloy slurry were investigated. The results show that the pouring temperature, the cooling water flow and the number of the curves have a major effect on the size and the distribution of primary Si grains. Under the experimental condition of the four-curve copper channel whose cooling water flow was 500 L·h-1 and the pouring temperature was 690 oC, the primary Si grains of the semi-solid A390 alloy slurry were refined to the greatest extent and the lath-like grains were changed into granular ones. Additionally, the equivalent grain diameter and the average shape factor of the primary Si grains of the satisfactory semi-solid A390 alloy slurry are 18.6 μm and 0.8, respectively. Further, the refinement mechanism of the primary Si grains through the serpentine channel pouring process was analyzed and discussed. In summary, the primary Si nuclei could be easily precipitated due to the chilling effect of the channel inner wall, thus the primary Si grains were greatly refined. Meanwhile, the subsequent alloy melt fluid also promoted the separation of primary Si grains from the inner wall, further refining the primary Si grains.展开更多
The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)...The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)-rich layer and Si–Ti–Fe alloy layer appeared successively in axial direction of ingot after electromagnetic DS of 90 wt.%Si–Ti alloy melt at different pulling-down speeds.Separation of primary Si and segregation mechanism of metal impurities(Fe)during the electromagnetic DS process were controlled by pulling-down speed of ingot and electromagnetic stirring.When pulling-down speed was 5μm/s,minimum thickness of the Si enriched layer was 29.4 mm,and the highest content of primary Si in this layer was 92.46 wt.%;meanwhile,the highest removal rate of Fe as metal impurity was 92.90%.The type of inclusions in the Si enriched layer is determined by Fe content of segregated Si enriched layer.When the pulling-down speed was 5μm/s,the inclusions in the Si enriched layer were TiSi_(2).Finally,when the pulling-down speed reached greater than 5μm/s,the inclusions in the Si enriched layer evolved into TiSi_(2)+τ_(5).展开更多
AlP has been widely used as an effective heterogenous nucleus for primary Si phase in hypereutectic AlSi alloys,but the morphological correlation between AlP and primary Si is still confusing.In the present work,the m...AlP has been widely used as an effective heterogenous nucleus for primary Si phase in hypereutectic AlSi alloys,but the morphological correlation between AlP and primary Si is still confusing.In the present work,the morphologies of AlP crystals were studied comprehensively by experimental observation and theorical prediction.It is found that AlP collected from an Al-0.03 P melt could be divided into two categories:spinel twin crystals and non-twin crystals.During the nucleation process,these two kinds of AlP crystals triggered morphologically templated nucleation of primary Si phase,resulting in the formation of hexagonal primary Si twin and octahedral non-twin crystals,respectively.As such,the percentage of primary Si twin crystals in the experimental Al-18 Si alloy was also increased obviously after the morphologically templated nucleation via Al P.The morphologically templated nucleation also eliminated the dendritic growth of primary Si phase and the formation of hopper structures inside primary Si,forcing primary Si to maintain to be faceted solid crystals through layer-by-layer growing mechanism.The insight into morphologically templated nucleation offers a new view in understanding the mechanism of heterogeneous nucleation of primary Si phase on AlP nuclei.展开更多
A pulse magnetic field(PMF)was applied on the hypereutectic A1-23%Si alloy of different temperature range(830-780 ℃,830-730 ℃,830-700 ℃,780-700 ℃,730-700 ℃)during its solidification processing.The influence of pu...A pulse magnetic field(PMF)was applied on the hypereutectic A1-23%Si alloy of different temperature range(830-780 ℃,830-730 ℃,830-700 ℃,780-700 ℃,730-700 ℃)during its solidification processing.The influence of pulse magnetic field on the size and distribution of primary Si was studied.The results show that,the primary Si is very coarse strip,distributs non-unifromly and gathers at the edge of the sample when the alloy solidifies under the condition of no PMF.By applying PMF can significantly refine the primary Si,and make the primary Si distribute uniformly.There has no significant effect on the refinement of primary Si when PMF applied from 830 ℃ to 780 ℃,indicating that PMF has no outstanding effect on the high temperature liquid metal.Applying PMF from 50 ℃ above the liquidus to 30 ℃ below the liquidus(i.e.from liquid to the initial nucleation stage)can get the best refinement result.The refining mechanism of the pulse magnetic field on the solidification structure of Ai-23%Si alloy was discussed,展开更多
Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results ...Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.展开更多
An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduc...An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.展开更多
The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigat...The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigated.The semisolidAl-30%Si alloy slurry was prepared by vibration serpentine channel pouring(VSCP)process in the RDC process.The results showthat the pouring temperature,the vibration frequency,and the number of the curves strongly affect the microstructure and mechanicalproperties of Al-30%Si alloy.Under experimental conditions of a pouring temperature of850°C,a twelve-curve copper channel anda vibration frequency of80Hz,the primary Si grains are refined into fine compact grains with average grain size of about24.6μm inthe RDC samples assisted with VSCP.Moreover,the ultimate tensile strength(UTS),elongation and hardness of the RDC sample are296MPa,0.87%and HB155,respectively.It is concluded that the VSCP process can effectively refine the primary Si grains.Therefinement of primary Si grains is the major cause for the improvement of the mechanical properties of the RDC sample.展开更多
The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that th...The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that the ultimate tensile strength and elongation of the alloy reached 229.5 MPa and 4.6%,respectively with the extrusion ratio of 10,and 263.2 MPa and 5.4%,respectively with extrusion ratio of 20.This indicates that the mechanical properties of the alloy are obviously improved with the increase of extrusion ratio.After hot extruded,the primary Si,eutectic Si,Mg2Si,AlNi,Al7Cu4Ni and Al-Si-Mn-Fe-Cr-Mo phases are refined to different extent,and the efficiency of refinement is obvious more and more with the increase of extrusion ratio.After T6 heat treatment,the sharp corners of these phases become passivated and roundish,and the mechanical properties are improved.The ultimate tensile strength of the extruded alloy after T6 heat treatment reaches 335.3 MPa with extrusion ratio of 10 and 353.6 MPa with extrusion ratio of 20.展开更多
An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 w...An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.展开更多
Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,...Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.展开更多
The effect of squeeze casting on microstructure and mechanical properties of hypereutectic Al-xS i alloys(x = 15, 17.5, 22 wt%) was investigated in this study. Results show that microstructure of the hypereutectic A...The effect of squeeze casting on microstructure and mechanical properties of hypereutectic Al-xS i alloys(x = 15, 17.5, 22 wt%) was investigated in this study. Results show that microstructure of the hypereutectic Al-x Si alloys was obviously improved by squeeze casting. The amount of coarse primary Si phase decreased, while that of fine primary α-Al dendrites increased with the increase of squeeze casting pressure. Due to the decrease of coarse primary Si particles, cracking of the matrix was reduced, whilst the fine microstructure, and mechanical properties of the squeeze casting alloys were improved. Compared with gravity casting alloys, mechanical properties of the hypereutectic Al-xS i alloys solidified at 600 MPa were improved significantly. Hardness of the squeeze casting hypereutectic Al-(15, 17.5, 22 wt%) Si alloys was improved by 15.91%, 12.23%, 17.48%, ultimate tensile strength was improved by 37.85%, 32.27%, 22.74%,and elongation was improved by 55.83%, 167.86%, 126.76%, respectively. Due to the uniform distribution of Si phases in squeeze casting Al-x Si alloys, their wear resistance was markedly enhanced.展开更多
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing,China
文摘Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.
基金supported by the National Natural Science Foundation of China(Grant Nos.51064017 and 51464031)
文摘Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.
文摘Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products.
基金Funded by the National Natural Science Foundation of China(No.51201140)the Fundamental Research Funds for the Central Universities(No.XDJK2010C007)
文摘The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction.
基金supported by the National Basic Research Program of China(2011CB606300)the National Natural Science Foundation of China(5077400)
文摘In this paper, the serpentine channel pouring process for preparing a semi-solid A390 alloy slurry and refining the primary Si grains of the A390 alloy, was used. The effects of the pouring temperature, the cooling water flow and the number of the curves on the size of the primary Si grains in the semi-solid A390 alloy slurry were investigated. The results show that the pouring temperature, the cooling water flow and the number of the curves have a major effect on the size and the distribution of primary Si grains. Under the experimental condition of the four-curve copper channel whose cooling water flow was 500 L·h-1 and the pouring temperature was 690 oC, the primary Si grains of the semi-solid A390 alloy slurry were refined to the greatest extent and the lath-like grains were changed into granular ones. Additionally, the equivalent grain diameter and the average shape factor of the primary Si grains of the satisfactory semi-solid A390 alloy slurry are 18.6 μm and 0.8, respectively. Further, the refinement mechanism of the primary Si grains through the serpentine channel pouring process was analyzed and discussed. In summary, the primary Si nuclei could be easily precipitated due to the chilling effect of the channel inner wall, thus the primary Si grains were greatly refined. Meanwhile, the subsequent alloy melt fluid also promoted the separation of primary Si grains from the inner wall, further refining the primary Si grains.
基金the Sichuan Science and Technology Program(2021YJ0548)Panzhihua Science and Technology Project(2020CY-G-15)+1 种基金Research Project of Panzhihua University(2020ZD002)Project of Sichuan Key Laboratory for comprehensive utilization of vanadium and titanium resources(2019FTSZ06,2020FTSZ01).
文摘The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)-rich layer and Si–Ti–Fe alloy layer appeared successively in axial direction of ingot after electromagnetic DS of 90 wt.%Si–Ti alloy melt at different pulling-down speeds.Separation of primary Si and segregation mechanism of metal impurities(Fe)during the electromagnetic DS process were controlled by pulling-down speed of ingot and electromagnetic stirring.When pulling-down speed was 5μm/s,minimum thickness of the Si enriched layer was 29.4 mm,and the highest content of primary Si in this layer was 92.46 wt.%;meanwhile,the highest removal rate of Fe as metal impurity was 92.90%.The type of inclusions in the Si enriched layer is determined by Fe content of segregated Si enriched layer.When the pulling-down speed was 5μm/s,the inclusions in the Si enriched layer were TiSi_(2).Finally,when the pulling-down speed reached greater than 5μm/s,the inclusions in the Si enriched layer evolved into TiSi_(2)+τ_(5).
基金Financial supports from Innovate UK(grant number 11019)National Natural Science Foundation of China(grant number 51571133,51731007 and 52071189)。
文摘AlP has been widely used as an effective heterogenous nucleus for primary Si phase in hypereutectic AlSi alloys,but the morphological correlation between AlP and primary Si is still confusing.In the present work,the morphologies of AlP crystals were studied comprehensively by experimental observation and theorical prediction.It is found that AlP collected from an Al-0.03 P melt could be divided into two categories:spinel twin crystals and non-twin crystals.During the nucleation process,these two kinds of AlP crystals triggered morphologically templated nucleation of primary Si phase,resulting in the formation of hexagonal primary Si twin and octahedral non-twin crystals,respectively.As such,the percentage of primary Si twin crystals in the experimental Al-18 Si alloy was also increased obviously after the morphologically templated nucleation via Al P.The morphologically templated nucleation also eliminated the dendritic growth of primary Si phase and the formation of hopper structures inside primary Si,forcing primary Si to maintain to be faceted solid crystals through layer-by-layer growing mechanism.The insight into morphologically templated nucleation offers a new view in understanding the mechanism of heterogeneous nucleation of primary Si phase on AlP nuclei.
基金Item Sponsored by National Natural Science Foundation of China[No.51074048]Fundamental Research Funds for the Central Universities[N110408002]
文摘A pulse magnetic field(PMF)was applied on the hypereutectic A1-23%Si alloy of different temperature range(830-780 ℃,830-730 ℃,830-700 ℃,780-700 ℃,730-700 ℃)during its solidification processing.The influence of pulse magnetic field on the size and distribution of primary Si was studied.The results show that,the primary Si is very coarse strip,distributs non-unifromly and gathers at the edge of the sample when the alloy solidifies under the condition of no PMF.By applying PMF can significantly refine the primary Si,and make the primary Si distribute uniformly.There has no significant effect on the refinement of primary Si when PMF applied from 830 ℃ to 780 ℃,indicating that PMF has no outstanding effect on the high temperature liquid metal.Applying PMF from 50 ℃ above the liquidus to 30 ℃ below the liquidus(i.e.from liquid to the initial nucleation stage)can get the best refinement result.The refining mechanism of the pulse magnetic field on the solidification structure of Ai-23%Si alloy was discussed,
基金Project(CDJZR12240056)supported by the Fundamental Research Funds for Central Universities,ChinaProject(cstc2013jcyj A50014)supported by the Foundational and Cutting-edge Research Plan of Chongqing,China
文摘Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50625101)the Key Project of Science and Technology Research of the Ministry of Education of China (No. 106103)
文摘An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
基金Project(5077400) supported by the National Natural Science Foundation of China
文摘The effects of pouring temperature,vibration frequency,and the number of curves in a serpentine channel,on themicrostructure and mechanical properties of Al-30%Si alloy processed by rheo-diecasting(RDC)were investigated.The semisolidAl-30%Si alloy slurry was prepared by vibration serpentine channel pouring(VSCP)process in the RDC process.The results showthat the pouring temperature,the vibration frequency,and the number of the curves strongly affect the microstructure and mechanicalproperties of Al-30%Si alloy.Under experimental conditions of a pouring temperature of850°C,a twelve-curve copper channel anda vibration frequency of80Hz,the primary Si grains are refined into fine compact grains with average grain size of about24.6μm inthe RDC samples assisted with VSCP.Moreover,the ultimate tensile strength(UTS),elongation and hardness of the RDC sample are296MPa,0.87%and HB155,respectively.It is concluded that the VSCP process can effectively refine the primary Si grains.Therefinement of primary Si grains is the major cause for the improvement of the mechanical properties of the RDC sample.
基金supported by National Natural Science Foundation of China (Grant No. 50971092)Innovation Team Plan pf Liaoning Provincical Education Department (Grant no. 2007T132)
文摘The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that the ultimate tensile strength and elongation of the alloy reached 229.5 MPa and 4.6%,respectively with the extrusion ratio of 10,and 263.2 MPa and 5.4%,respectively with extrusion ratio of 20.This indicates that the mechanical properties of the alloy are obviously improved with the increase of extrusion ratio.After hot extruded,the primary Si,eutectic Si,Mg2Si,AlNi,Al7Cu4Ni and Al-Si-Mn-Fe-Cr-Mo phases are refined to different extent,and the efficiency of refinement is obvious more and more with the increase of extrusion ratio.After T6 heat treatment,the sharp corners of these phases become passivated and roundish,and the mechanical properties are improved.The ultimate tensile strength of the extruded alloy after T6 heat treatment reaches 335.3 MPa with extrusion ratio of 10 and 353.6 MPa with extrusion ratio of 20.
文摘An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.
基金Project(18JS060) supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2018JQ5087) supported by Natural Science Basic Research Plan of Shaanxi Province,China。
文摘Hypereutectic Al-40 wt.%Si alloys were fabricated by the combination of gas atomization and spark plasma sintering(SPS) technology. The effects of holding time(15-60 min) on phase composition, microstructure, density,mechanical properties of Al-Si alloys were investigated by XRD, SEM, a hydrostatic balance, an automatic micro hardness tester and a universal tensile testing machine. The results showed that homogenous distribution of ultrafine primary Si and high density of alloys can be obtained at holding time of 30 min. Compared with primary Si(3.7 μm)fabricated by gas atomization, the average size increased from 5.17 to 7.72 μm with the increase of holding time during SPS process. Overall, the relative density, maximum tensile strength and Vickers hardness of 94.9%, 205 MPa and HV;196.86 were achieved at holding time of 30 min, respectively. In addition, all the diffraction peaks were corresponded to α-Al or β-Si and no other phase can be detected. Finally, the densification process of SPS was also discussed.
基金support from the National Natural Science Foundation of China(Grant No.51674168)Shenyang Application Basic Research Fund(Grant No.F14-231-1-23)
文摘The effect of squeeze casting on microstructure and mechanical properties of hypereutectic Al-xS i alloys(x = 15, 17.5, 22 wt%) was investigated in this study. Results show that microstructure of the hypereutectic Al-x Si alloys was obviously improved by squeeze casting. The amount of coarse primary Si phase decreased, while that of fine primary α-Al dendrites increased with the increase of squeeze casting pressure. Due to the decrease of coarse primary Si particles, cracking of the matrix was reduced, whilst the fine microstructure, and mechanical properties of the squeeze casting alloys were improved. Compared with gravity casting alloys, mechanical properties of the hypereutectic Al-xS i alloys solidified at 600 MPa were improved significantly. Hardness of the squeeze casting hypereutectic Al-(15, 17.5, 22 wt%) Si alloys was improved by 15.91%, 12.23%, 17.48%, ultimate tensile strength was improved by 37.85%, 32.27%, 22.74%,and elongation was improved by 55.83%, 167.86%, 126.76%, respectively. Due to the uniform distribution of Si phases in squeeze casting Al-x Si alloys, their wear resistance was markedly enhanced.