Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l...PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.展开更多
The dual impact of climate change and human activities has precipitated a sharp decline in primate biodiversity globally.China is home to the most diverse primate species in the Northern hemisphere,which face severe e...The dual impact of climate change and human activities has precipitated a sharp decline in primate biodiversity globally.China is home to the most diverse primate species in the Northern hemisphere,which face severe ecological threats due to the expansion of modern agriculture,extensive exploitation and consumption of natural resources,and excessive land development during its transition from an agricultural to a modern society.In response,China has implemented various ecological conservation measures,including habitat restoration and protection.These efforts have made substantial strides in biodiversity conservation,with certain regions witnessing an increase in primate populations.In the current study,we conducted a systematic review of historical documents and field research data related to Chinese primates,evaluating the endangered status of primate species in China.Despite improvements in the habitats of most primate species and some population growth,many species still face severe threats,including declining and small populations.Species such as the Myanmar snub-nosed monkey(Rhinopithecus strykeri),eastern black crested gibbon(Nomascus nasutus),and Hainan gibbon(N.hainanus)remain particularly vulnerable due to their limited distribution ranges and extremely small populations.Insufficient scientific data,fragmented information,and not enough studies in conservation biology further compound the challenges.Moreover,there is a notable lack of detailed population monitoring data for species such as the Bengal slow loris(Nycticebus bengalensis),pygmy slow loris(N.pygmaeus),Indochinese gray langur(Trachypithecus crepusculus),Shortridge’s langur(T.shortridgei),and capped langur(T.pileatus),which hinders the development of practical and targeted conservation management strategies.Therefore,for national biodiversity conservation,there is an urgent need for specialized primate surveys,enhancing habitat protection and restoration,and increasing focus on cross-border conservation strategies and regional cooperation.There is also a need to establish a comprehensive and systematic research database platform,conduct continuous and in-depth research in primate biology,and actively engage in the scientific assessment of ecotourism.Additionally,strengthening public awareness and education on wildlife conservation remains essential.Such integrated and systematic efforts will provide scientific support for the current and future conservation and management of primate species in China.展开更多
Spinal cord injury results in significant sensorimotor deficits,currently,there is no curative treatment for the symptoms induced by spinal cord injury.Basic and pre-clinical research on spinal cord injury relies on t...Spinal cord injury results in significant sensorimotor deficits,currently,there is no curative treatment for the symptoms induced by spinal cord injury.Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models.These models should replicate the symptoms observed in human,allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury.Non-human primates,due to their close phylogenetic association with humans,share more neuroanatomical,genetic,and physiological similarities with humans than rodents.Therefore,the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans.In this review,we will discuss nonhuman primate models of spinal cord injury,focusing on in vivo assessments,including behavioral tests,magnetic resonance imaging,and electrical activity recordings,as well as ex vivo histological analyses.Additionally,we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.展开更多
Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulatio...Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential.展开更多
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo...Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.展开更多
Strabismus and amblyopia are common ophthalmologic developmental diseases caused by abnormal visual experiences. However, the underlying pathogenesis and visual defects are still not fully understood. Most studies hav...Strabismus and amblyopia are common ophthalmologic developmental diseases caused by abnormal visual experiences. However, the underlying pathogenesis and visual defects are still not fully understood. Most studies have used experimental interference to establish diseaseassociated animal models, while ignoring the natural pathophysiological mechanisms. This study was designed to investigate whether natural strabismus and amblyopia are associated with abnormal neurological defects. We screened one natural strabismic monkey(Macaca fascicularis) and one natural amblyopic monkey from hundreds of monkeys, and retrospectively analyzed one human strabismus case. Neuroimaging, behavioral,neurophysiological, neurostructural, and genovariation features were systematically evaluated using magnetic resonance imaging(MRI), behavioral tasks, flash visual evoked potentials(FVEP),electroretinogram(ERG), optical coherence tomography(OCT), and whole-genome sequencing(WGS), respectively. Results showed that the strabismic patient and natural strabismic and amblyopic monkeys exhibited similar abnormal asymmetries in brain structure, i.e., ipsilateral impaired right hemisphere. Visual behavior, visual function, retinal structure, and fundus of the monkeys were impaired. Aberrant asymmetry in binocular visual function and structure between the strabismic and amblyopic monkeys was closely related, with greater impairment of the left visual pathway.Several similar known mutant genes for strabismus and amblyopia were also identified. In conclusion,natural strabismus and amblyopia are accompanied by abnormal asymmetries of the visual system,especially visual neurophysiological and neurostructural defects. Our results suggest that future therapeutic and mechanistic studies should consider defects and asymmetries throughout the entire visual system.展开更多
Cancer is the second leading disease causing human death.Pre-clinical in vivo studies are essential for translating in vitro laboratory research results into the clinic.Rodents,including the mouse and rat,have been wi...Cancer is the second leading disease causing human death.Pre-clinical in vivo studies are essential for translating in vitro laboratory research results into the clinic.Rodents,including the mouse and rat,have been widely used for pre-clinical studies due to their small size,clear genetic backgrounds,rapid propagation,and mature transgenic technologies.However,because rodents are evolutionarily distinct from humans,many pre-clinical research results using rodent models cannot be reproduced in the clinic.Non-human primates(NHPs) may be better animal models than rodents for human cancer research because NHPs and humans share greater similarity in regards to their genetic evolution,immune system,physiology and metabolism.This article reviews the latest progress of cancer research in NHPs by focusing on the carcinogenesis of different NHPs induced by chemical and biological carcinogens.Finally,future research directions for the use of NHPs in cancer research are discussed.展开更多
Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biom...Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective to better utilize NHP resources and further foster NHP research in China.展开更多
We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the ad...We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the advantages of investigating both genes and neural mechanisms and processes in the emergence of behavioral and cognitive functions,and propose the establishment of an open field of primate research.The latter may be conducted by implementing and harmonizing experimental practices with ethical guidelines that regulate(1)management of natural parks with free-moving populations of target nonhuman primates,(2)establishment of indoor-outdoor labs for both system genetics and neuroscience investigations,and(3)hotel space and technologies which remotely collect and dislocate information regarding primates geographically located elsewhere.展开更多
The central nervous system is known to have limited regenerative capacity.Not only does this halt the human body’s reparative processes after central nervous system lesions,but it also impedes the establishment of ef...The central nervous system is known to have limited regenerative capacity.Not only does this halt the human body’s reparative processes after central nervous system lesions,but it also impedes the establishment of effective and safe therapeutic options for such patients.Despite the high prevalence of stroke and spinal cord injury in the general population,these conditions remain incurable and place a heavy burden on patients’families and on society more broadly.Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments,utilizing stem cells-based strategies,biologically active molecules,nanotechnology,exosomes and highly tunable biodegradable systems(e.g.,certain hydrogels).Although there are studies demonstrating promising preclinical results,safe clinical translation has not yet been accomplished.A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment,and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury.Such an ideal model does not currently exist,but it seems that the nonhuman primate model is uniquely qualified for this role,given its close resemblance to humans.This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation.In addition,it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.展开更多
Stem cell therapy (SCT) for Parkinson’s disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging P...Stem cell therapy (SCT) for Parkinson’s disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging PD therapies and facilitated the translation of initiatives for human patients. NHP models of PD include primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, who are responsive to dopamine replacement therapies, similar to human PD patients. Extensive research in SCT has been conducted to better treat the progressive dopaminergic neurodegeneration that underlies PD. For effective application of SCT in PD, however, a number of basic parameters still need to be tested and optimized in NHP models, including preparation and storage of cells for engraftment, methods of transplantation, choice of target sites, and timelines for recovery. In this review, we discuss the current status of NHP models of PD in stem cell research. We also analyze the advances and remaining challenges for successful clinical translation of SCT for this persistent disease.展开更多
In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in ...In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.展开更多
China is one of the most dynamic countries of the world and it shelters some amazing levels of biodiversity, including some very special primate species. However, primarily as a result of forest loss, most of which oc...China is one of the most dynamic countries of the world and it shelters some amazing levels of biodiversity, including some very special primate species. However, primarily as a result of forest loss, most of which occurred in historical times, approximately 70% of China's primate species have less than 3 000 individuals. Here I evaluate one road for future conservation/development that could produce very positive gains for China's primates; namely forest restoration. I argue that for a large scale restoration project to be possible two conditions must be met; the right societal conditions must exist and the right knowledge must be in hand. This evaluation suggests that the restoration of native forest to support many of China's primates holds great potential to advance conservation goals and to promote primate population recovery.展开更多
Whether endogenous neurogenesis occurs in the adult cortex remains controversial.An increasing number of reports suggest that doublecortin(DCX)-positive neurogenesis persists in the adult primate cortex,attracting eno...Whether endogenous neurogenesis occurs in the adult cortex remains controversial.An increasing number of reports suggest that doublecortin(DCX)-positive neurogenesis persists in the adult primate cortex,attracting enormous attention worldwide.In this study,different DCX antibodies were used together with NeuN antibodies in immunohistochemistry and western blot assays using adjacent cortical sections from adult monkeys.Antibody adsorption,antigen binding,primary antibody omission and antibody-free experiments were used to assess specificity of the signals.We found either strong fluorescent signals,medium-weak intensity signals in some cells,weak signals in a few perikarya or near complete lack of labeling in adjacent cortical sections incubated with the various DCX antibodies.The putative DCX-positive cells in the cortex were also positive for NeuN,a specific marker of mature neurons.However,further experiments showed that most of these signals were either the result of antibody cross reactivity,the non-specificity of secondary antibodies or tissue autofluorescence.No confirmed DCX-positive cells were detected in the adult macaque cortex by immunofluorescence.Our findings show that DCX-positive neurogenesis does not occur in the cerebral cortex of adult primates,and that false-positive signals(artefacts)are caused by antibody cross reactivity and autofluorescence.The experimental protocols were approved by the Institutional Animal Care and Use Committee of the Institute of Neuroscience,Beijing,China(approval No.IACUC-AMMS-2014-501).展开更多
Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and implantable bioengineered constructs. Reproducing the comple...Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and implantable bioengineered constructs. Reproducing the complex relations between different cell types, generation of adequate vasculature, and immunological complications are road blocks in generation of bioengineered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC) biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP) using patient-derived iPSC and NHP-derived iPSC lacking the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA) profile as the patient. This approach can be curative in genetic disorders as this offers the possibility of gene manipulation and correction of the patient's genome at the iPSC stage before tetraploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural signaling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.展开更多
Dear Editor, The process of relapse involves firm or aberrant memories of environmental cues associated with drug craving or addiction. To date, it is not known where these memories are stored in the brain, what kind...Dear Editor, The process of relapse involves firm or aberrant memories of environmental cues associated with drug craving or addiction. To date, it is not known where these memories are stored in the brain, what kinds of regulatory biological factors or molecules are involved, nor why it is so difficult to stop addiction psychologically. Currently, rodent animal models, such as the self-administration and conditioning place preference / aversion paradigm are still widely used in the studies of drug withdrawal syndromes or drug-associate memories. However, the differences between humans and rodents--particularly in terms of genetics, and pathology and pharmacology--have significantly limited the application of further studies on this topic. Essentially, rodents lack the longterm or life-time memories humans possess and lose their drug-associated memory only after a few weeks of withdrawal.展开更多
Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested c...Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model.展开更多
With the increasingly serious aging of the global population, dementia has already become a severe clinical challenge on a global scale. Dementia caused by Alzheimer’s disease(AD) is the most common form of dementia ...With the increasingly serious aging of the global population, dementia has already become a severe clinical challenge on a global scale. Dementia caused by Alzheimer’s disease(AD) is the most common form of dementia observed in the elderly, but its pathogenetic mechanism has still not been fully elucidated. Furthermore, no effective treatment strategy has been developed to date, despite considerable efforts. This can be mainly attributed to the paucity of animal models of AD that are sufficiently similar to humans. Among the presently established animal models, non-human primates share the closest relationship with humans, and their neural anatomy and neurobiology share highly similar characteristics with those of humans. Thus, there is no doubt that these play an irreplaceable role in AD research. Considering this, the present literature on non-human primate models of AD was reviewed to provide a theoretical basis for future research.展开更多
Early rearing experiences are important in one's whole life, whereas early adverse rearing experience(EARE) is usually related to various physical and mental disorders in later life. Although there were many studie...Early rearing experiences are important in one's whole life, whereas early adverse rearing experience(EARE) is usually related to various physical and mental disorders in later life. Although there were many studies on human and animals, regarding the effect of EARE on brain development, neuroendocrine systems, as well as the consequential mental disorders and behavioral abnormalities, the underlying mechanisms remain unclear. Due to the close genetic relationship and similarity in social organizations with humans, non-human primate(NHP) studies were performed for over 60 years. Various EARE models were developed to disrupt the early normal interactions between infants and mothers or peers. Those studies provided important insights of EARE induced effects on the physiological and behavioral systems of NHPs across life span, such as social behaviors(including disturbance behavior, social deficiency, sexual behavior, etc), learning and memory ability, brain structural and functional developments(including influences on neurons and glia cells, neuroendocrine systems, e.g., hypothalamic-pituitary-adrenal(HPA) axis, etc). In this review, the effects of EARE and the underlying epigenetic mechanisms were comprehensively summarized and the possibility of rehabilitation was discussed.展开更多
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
基金supported by the National Natural Science Foundation of China (32070534,32370567,82371874,81830032,31872779,82071421,81873736)Key Field Research and Development Program of Guangdong Province (2018B030337001)+3 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006)Guangdong Basic and Applied Basic Research Foundation (2023B1515020031,2022A1515012301)Fundamental Research Funds for the Central Universities (Jinan University,21620358)。
文摘PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.
基金supported by the National Natural Science Foundation of China(32371563)and Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31020302)。
文摘The dual impact of climate change and human activities has precipitated a sharp decline in primate biodiversity globally.China is home to the most diverse primate species in the Northern hemisphere,which face severe ecological threats due to the expansion of modern agriculture,extensive exploitation and consumption of natural resources,and excessive land development during its transition from an agricultural to a modern society.In response,China has implemented various ecological conservation measures,including habitat restoration and protection.These efforts have made substantial strides in biodiversity conservation,with certain regions witnessing an increase in primate populations.In the current study,we conducted a systematic review of historical documents and field research data related to Chinese primates,evaluating the endangered status of primate species in China.Despite improvements in the habitats of most primate species and some population growth,many species still face severe threats,including declining and small populations.Species such as the Myanmar snub-nosed monkey(Rhinopithecus strykeri),eastern black crested gibbon(Nomascus nasutus),and Hainan gibbon(N.hainanus)remain particularly vulnerable due to their limited distribution ranges and extremely small populations.Insufficient scientific data,fragmented information,and not enough studies in conservation biology further compound the challenges.Moreover,there is a notable lack of detailed population monitoring data for species such as the Bengal slow loris(Nycticebus bengalensis),pygmy slow loris(N.pygmaeus),Indochinese gray langur(Trachypithecus crepusculus),Shortridge’s langur(T.shortridgei),and capped langur(T.pileatus),which hinders the development of practical and targeted conservation management strategies.Therefore,for national biodiversity conservation,there is an urgent need for specialized primate surveys,enhancing habitat protection and restoration,and increasing focus on cross-border conservation strategies and regional cooperation.There is also a need to establish a comprehensive and systematic research database platform,conduct continuous and in-depth research in primate biology,and actively engage in the scientific assessment of ecotourism.Additionally,strengthening public awareness and education on wildlife conservation remains essential.Such integrated and systematic efforts will provide scientific support for the current and future conservation and management of primate species in China.
基金supported by the patient organizations“Verticale”(to FEP).
文摘Spinal cord injury results in significant sensorimotor deficits,currently,there is no curative treatment for the symptoms induced by spinal cord injury.Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models.These models should replicate the symptoms observed in human,allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury.Non-human primates,due to their close phylogenetic association with humans,share more neuroanatomical,genetic,and physiological similarities with humans than rodents.Therefore,the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans.In this review,we will discuss nonhuman primate models of spinal cord injury,focusing on in vivo assessments,including behavioral tests,magnetic resonance imaging,and electrical activity recordings,as well as ex vivo histological analyses.Additionally,we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.
文摘Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential.
文摘Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
基金supported by the National Natural Science Foundation of China(81870682,81961128021,81670885)National Key R&D Program of China(2022YEF0203200,2021ZD0200103,2018YFA0108300)+2 种基金Guangdong Provincial Key R&D Programs(2018B030335001,2018B030337001)Local Innovative and Research Teams Project of Guangdong(2017BT01S138)Science and Technology Program of Guangzhou(202007030011,202007030010)。
文摘Strabismus and amblyopia are common ophthalmologic developmental diseases caused by abnormal visual experiences. However, the underlying pathogenesis and visual defects are still not fully understood. Most studies have used experimental interference to establish diseaseassociated animal models, while ignoring the natural pathophysiological mechanisms. This study was designed to investigate whether natural strabismus and amblyopia are associated with abnormal neurological defects. We screened one natural strabismic monkey(Macaca fascicularis) and one natural amblyopic monkey from hundreds of monkeys, and retrospectively analyzed one human strabismus case. Neuroimaging, behavioral,neurophysiological, neurostructural, and genovariation features were systematically evaluated using magnetic resonance imaging(MRI), behavioral tasks, flash visual evoked potentials(FVEP),electroretinogram(ERG), optical coherence tomography(OCT), and whole-genome sequencing(WGS), respectively. Results showed that the strabismic patient and natural strabismic and amblyopic monkeys exhibited similar abnormal asymmetries in brain structure, i.e., ipsilateral impaired right hemisphere. Visual behavior, visual function, retinal structure, and fundus of the monkeys were impaired. Aberrant asymmetry in binocular visual function and structure between the strabismic and amblyopic monkeys was closely related, with greater impairment of the left visual pathway.Several similar known mutant genes for strabismus and amblyopia were also identified. In conclusion,natural strabismus and amblyopia are accompanied by abnormal asymmetries of the visual system,especially visual neurophysiological and neurostructural defects. Our results suggest that future therapeutic and mechanistic studies should consider defects and asymmetries throughout the entire visual system.
基金supported in part by a grant from Yunnan Province High-Profile Talent Project 2010CI114grants from Chinese Academy of Sciences(Basic frontier project,KSCX2-EW-J-23)~~
文摘Cancer is the second leading disease causing human death.Pre-clinical in vivo studies are essential for translating in vitro laboratory research results into the clinic.Rodents,including the mouse and rat,have been widely used for pre-clinical studies due to their small size,clear genetic backgrounds,rapid propagation,and mature transgenic technologies.However,because rodents are evolutionarily distinct from humans,many pre-clinical research results using rodent models cannot be reproduced in the clinic.Non-human primates(NHPs) may be better animal models than rodents for human cancer research because NHPs and humans share greater similarity in regards to their genetic evolution,immune system,physiology and metabolism.This article reviews the latest progress of cancer research in NHPs by focusing on the carcinogenesis of different NHPs induced by chemical and biological carcinogens.Finally,future research directions for the use of NHPs in cancer research are discussed.
基金supported by the National Natural Science Foundation of China(81172876,81273251,U1202228,81471620)the National Special Science Research Program of China(2012CBA01305)+1 种基金the National Science and Technology Major Project(2013ZX10001-002,2012ZX10001-007)the Knowledge Innovation Program of CAS(KSCX2-EW-R-13,KJZD-EW-L10-02)
文摘Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective to better utilize NHP resources and further foster NHP research in China.
文摘We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the advantages of investigating both genes and neural mechanisms and processes in the emergence of behavioral and cognitive functions,and propose the establishment of an open field of primate research.The latter may be conducted by implementing and harmonizing experimental practices with ethical guidelines that regulate(1)management of natural parks with free-moving populations of target nonhuman primates,(2)establishment of indoor-outdoor labs for both system genetics and neuroscience investigations,and(3)hotel space and technologies which remotely collect and dislocate information regarding primates geographically located elsewhere.
基金supported by Onassis Foundation(to MT)the National Center for Complementary and Integrative Health(NCCIH),No.R21AT008865(to NM)National Institute of Aging(NIA)/National Institute of Mental Health(NIMH),No.R01AG042512(to NM)
文摘The central nervous system is known to have limited regenerative capacity.Not only does this halt the human body’s reparative processes after central nervous system lesions,but it also impedes the establishment of effective and safe therapeutic options for such patients.Despite the high prevalence of stroke and spinal cord injury in the general population,these conditions remain incurable and place a heavy burden on patients’families and on society more broadly.Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments,utilizing stem cells-based strategies,biologically active molecules,nanotechnology,exosomes and highly tunable biodegradable systems(e.g.,certain hydrogels).Although there are studies demonstrating promising preclinical results,safe clinical translation has not yet been accomplished.A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment,and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury.Such an ideal model does not currently exist,but it seems that the nonhuman primate model is uniquely qualified for this role,given its close resemblance to humans.This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation.In addition,it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.
基金supported by the National Key R&D Program of China(2016YFA0101401)
文摘Stem cell therapy (SCT) for Parkinson’s disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging PD therapies and facilitated the translation of initiatives for human patients. NHP models of PD include primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, who are responsive to dopamine replacement therapies, similar to human PD patients. Extensive research in SCT has been conducted to better treat the progressive dopaminergic neurodegeneration that underlies PD. For effective application of SCT in PD, however, a number of basic parameters still need to be tested and optimized in NHP models, including preparation and storage of cells for engraftment, methods of transplantation, choice of target sites, and timelines for recovery. In this review, we discuss the current status of NHP models of PD in stem cell research. We also analyze the advances and remaining challenges for successful clinical translation of SCT for this persistent disease.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13010000)the National Natural Science Foundation of China(31130051)
文摘In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.
基金Supported by the Canada Research Chairs Programthe Natural Science and Engineering Research Council of CanadaKyoto University
文摘China is one of the most dynamic countries of the world and it shelters some amazing levels of biodiversity, including some very special primate species. However, primarily as a result of forest loss, most of which occurred in historical times, approximately 70% of China's primate species have less than 3 000 individuals. Here I evaluate one road for future conservation/development that could produce very positive gains for China's primates; namely forest restoration. I argue that for a large scale restoration project to be possible two conditions must be met; the right societal conditions must exist and the right knowledge must be in hand. This evaluation suggests that the restoration of native forest to support many of China's primates holds great potential to advance conservation goals and to promote primate population recovery.
基金supported by the National Natural Science Foundation of China(Key Program),No.30430310(to SJL)the State Key Laboratories Development Program of China,No.SKLP-K201401(to SJL)
文摘Whether endogenous neurogenesis occurs in the adult cortex remains controversial.An increasing number of reports suggest that doublecortin(DCX)-positive neurogenesis persists in the adult primate cortex,attracting enormous attention worldwide.In this study,different DCX antibodies were used together with NeuN antibodies in immunohistochemistry and western blot assays using adjacent cortical sections from adult monkeys.Antibody adsorption,antigen binding,primary antibody omission and antibody-free experiments were used to assess specificity of the signals.We found either strong fluorescent signals,medium-weak intensity signals in some cells,weak signals in a few perikarya or near complete lack of labeling in adjacent cortical sections incubated with the various DCX antibodies.The putative DCX-positive cells in the cortex were also positive for NeuN,a specific marker of mature neurons.However,further experiments showed that most of these signals were either the result of antibody cross reactivity,the non-specificity of secondary antibodies or tissue autofluorescence.No confirmed DCX-positive cells were detected in the adult macaque cortex by immunofluorescence.Our findings show that DCX-positive neurogenesis does not occur in the cerebral cortex of adult primates,and that false-positive signals(artefacts)are caused by antibody cross reactivity and autofluorescence.The experimental protocols were approved by the Institutional Animal Care and Use Committee of the Institute of Neuroscience,Beijing,China(approval No.IACUC-AMMS-2014-501).
文摘Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and implantable bioengineered constructs. Reproducing the complex relations between different cell types, generation of adequate vasculature, and immunological complications are road blocks in generation of bioengineered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC) biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP) using patient-derived iPSC and NHP-derived iPSC lacking the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA) profile as the patient. This approach can be curative in genetic disorders as this offers the possibility of gene manipulation and correction of the patient's genome at the iPSC stage before tetraploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural signaling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.
文摘Dear Editor, The process of relapse involves firm or aberrant memories of environmental cues associated with drug craving or addiction. To date, it is not known where these memories are stored in the brain, what kinds of regulatory biological factors or molecules are involved, nor why it is so difficult to stop addiction psychologically. Currently, rodent animal models, such as the self-administration and conditioning place preference / aversion paradigm are still widely used in the studies of drug withdrawal syndromes or drug-associate memories. However, the differences between humans and rodents--particularly in terms of genetics, and pathology and pharmacology--have significantly limited the application of further studies on this topic. Essentially, rodents lack the longterm or life-time memories humans possess and lose their drug-associated memory only after a few weeks of withdrawal.
基金supported by the National Natural Science Foundation of China,No.81000852 and 81301677the AHA Award,No.17POST32530004+1 种基金the Supporting Project of Science & Technology of Sichuan Province of China,No.2012SZ0140the Research Foundation of Zhejiang Province of China,No.201022896
文摘Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model.
基金The CAMS Innovation Fund for Medical Science(2016-12M-2-006 and 2016-12M-1-10)the PUMC Innovation Fund for Graduate Students(Grant/Award number:2017-1001-07)
文摘With the increasingly serious aging of the global population, dementia has already become a severe clinical challenge on a global scale. Dementia caused by Alzheimer’s disease(AD) is the most common form of dementia observed in the elderly, but its pathogenetic mechanism has still not been fully elucidated. Furthermore, no effective treatment strategy has been developed to date, despite considerable efforts. This can be mainly attributed to the paucity of animal models of AD that are sufficiently similar to humans. Among the presently established animal models, non-human primates share the closest relationship with humans, and their neural anatomy and neurobiology share highly similar characteristics with those of humans. Thus, there is no doubt that these play an irreplaceable role in AD research. Considering this, the present literature on non-human primate models of AD was reviewed to provide a theoretical basis for future research.
基金supported by Hainan special fund project for science and technology(KJHZ2015-20)
文摘Early rearing experiences are important in one's whole life, whereas early adverse rearing experience(EARE) is usually related to various physical and mental disorders in later life. Although there were many studies on human and animals, regarding the effect of EARE on brain development, neuroendocrine systems, as well as the consequential mental disorders and behavioral abnormalities, the underlying mechanisms remain unclear. Due to the close genetic relationship and similarity in social organizations with humans, non-human primate(NHP) studies were performed for over 60 years. Various EARE models were developed to disrupt the early normal interactions between infants and mothers or peers. Those studies provided important insights of EARE induced effects on the physiological and behavioral systems of NHPs across life span, such as social behaviors(including disturbance behavior, social deficiency, sexual behavior, etc), learning and memory ability, brain structural and functional developments(including influences on neurons and glia cells, neuroendocrine systems, e.g., hypothalamic-pituitary-adrenal(HPA) axis, etc). In this review, the effects of EARE and the underlying epigenetic mechanisms were comprehensively summarized and the possibility of rehabilitation was discussed.