The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year w...The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year with the use of the classification of finite simple groups (CFSG). A series of interesting questions arise naturally. First of all, it is not clear whether it is possible to avoid CFSG or not. On the other hand, what happens for infinite groups? Since the status of knowledge of the non-commuting graph and of the prime graph is satisfactory, is it possible to find relations between these two graphs and the Sylow graph? In the present note we make the point of the situation and formulate the above questions in appropriate way.展开更多
We investigate prime labeling for some graphs resulted by identifying any two vertices of some graphs. We also introduce the concept of strongly prime graph and prove that the graphs Cn, Pn, and K1,n are strongly prim...We investigate prime labeling for some graphs resulted by identifying any two vertices of some graphs. We also introduce the concept of strongly prime graph and prove that the graphs Cn, Pn, and K1,n are strongly prime graphs. Moreover we prove that Wn is a strongly prime graph for every even integer n ≥ 4.展开更多
In this paper we prove that the split graphs of K1,n and Bn,n are prime cordial graphs. We also show that the square graph of Bn,n is a prime cordial graph while middle graph of Pn is a prime cordial graph for n≥4 . ...In this paper we prove that the split graphs of K1,n and Bn,n are prime cordial graphs. We also show that the square graph of Bn,n is a prime cordial graph while middle graph of Pn is a prime cordial graph for n≥4 . Further we prove that the wheel graph Wn admits prime cordial labeling for n≥8.展开更多
An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(...An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(Z,D) )=4 where P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as is 1 or 2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes, Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schroder primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of prime numbers in class 2 category.展开更多
In the present work we investigate some classes of graphs and disjoint union of some classes of graphs which admit prime labeling. We also investigate prime labeling of a graph obtained by identifying two vertices of ...In the present work we investigate some classes of graphs and disjoint union of some classes of graphs which admit prime labeling. We also investigate prime labeling of a graph obtained by identifying two vertices of two graphs. We also investigate prime labeling of a graph obtained by identifying two edges of two graphs. Prime labeling of a prism graph is also discussed. We show that a wheel graph of odd order is switching invariant. A necessary and sufficient condition for the complement of Wn to be a prime graph is investigated.展开更多
Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices ...Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.展开更多
For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G i...For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.展开更多
文摘The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year with the use of the classification of finite simple groups (CFSG). A series of interesting questions arise naturally. First of all, it is not clear whether it is possible to avoid CFSG or not. On the other hand, what happens for infinite groups? Since the status of knowledge of the non-commuting graph and of the prime graph is satisfactory, is it possible to find relations between these two graphs and the Sylow graph? In the present note we make the point of the situation and formulate the above questions in appropriate way.
文摘We investigate prime labeling for some graphs resulted by identifying any two vertices of some graphs. We also introduce the concept of strongly prime graph and prove that the graphs Cn, Pn, and K1,n are strongly prime graphs. Moreover we prove that Wn is a strongly prime graph for every even integer n ≥ 4.
文摘In this paper we prove that the split graphs of K1,n and Bn,n are prime cordial graphs. We also show that the square graph of Bn,n is a prime cordial graph while middle graph of Pn is a prime cordial graph for n≥4 . Further we prove that the wheel graph Wn admits prime cordial labeling for n≥8.
文摘An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(Z,D) )=4 where P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as is 1 or 2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes, Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schroder primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of prime numbers in class 2 category.
文摘In the present work we investigate some classes of graphs and disjoint union of some classes of graphs which admit prime labeling. We also investigate prime labeling of a graph obtained by identifying two vertices of two graphs. We also investigate prime labeling of a graph obtained by identifying two edges of two graphs. Prime labeling of a prism graph is also discussed. We show that a wheel graph of odd order is switching invariant. A necessary and sufficient condition for the complement of Wn to be a prime graph is investigated.
基金Project supported by the NNSF of China(No.10571128)the SRFDP of China(No.20060285002)Young Teachers Fund of College of Mathematics and Physics,Chongqing University(2005)
基金supported by Natural Science Foundation Project of CQ CSTC (2010BB9206)NNSF of China (10871032)+1 种基金Fundamental Research Funds for the Central Universities (Chongqing University, CDJZR10100009)National Science Foundation for Distinguished Young Scholars of China (11001226)
文摘Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.
基金This work has been supported by the Research Institute for Fundamental Sciences Tabriz,Iran.
文摘For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.