Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor dete...Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes.With the development of immunological technology,many studies have shown that diabetic nephropathy is an immune complex disease,and that most patients have immune dysfunction.However,the immune response associated with diabetic nephropathy and autoimmune kidney disease,or caused by ischemia or infection with acute renal injury,is different,and has a complicated pathological mechanism.In this review,we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism,to provide guidance and advice for early intervention and treatment of diabetic nephropathy.展开更多
INTRODUCTION At present hepatitis B vaccine immunization is an unique effective measure for controlling hepatitis B.It is important o determine optimal immunization
A novel immunization strategy called the random walk immunization strategy on scale-free networks is proposed. Different from other known immunization strategies, this strategy works as follows: a node is randomly ch...A novel immunization strategy called the random walk immunization strategy on scale-free networks is proposed. Different from other known immunization strategies, this strategy works as follows: a node is randomly chosen from the network. Starting from this node, randomly walk to one of its neighbor node; if the present node is not immunized, then immunize it and continue the random walk; otherwise go back to the previous node and randomly walk again. This process is repeated until a certain fraction of nodes is immunized. By theoretical analysis and numerical simulations, we found that this strategy is very effective in comparison with the other known immunization strategies.展开更多
An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,decipherin...An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation.With these delicate dynamics in mind,immunomodulatory therapies have emerged as a promising avenue for miti-gating the challenges posed by COVID-19.Precision in manipulating immune pathways presents an opportunity to alter the host response,optimizing antiviral defenses while curbing deleterious inflammation.This review article compre-hensively analyzes immunomodulatory interventions in managing COVID-19.We explore diverse approaches to mitigating the hyperactive immune response and its impact,from corticosteroids and non-steroidal drugs to targeted biologics,including anti-viral drugs,cytokine inhibitors,JAK inhibitors,convalescent plasma,monoclonal antibodies(mAbs)to severe acute respiratory syndrome coronavirus 2,cell-based therapies(i.e.,CAR T,etc.).By summarizing the current evidence,we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.CS Glucocorticoids are among the most widely prescribed drugs with their immune-suppressive and anti-inflammatory effect[84].The current guidelines for the treatment of COVID-19 recommend against the use of dexamethasone or other systemic CS in non-hospitalized patients in the absence of another indication[70].The RECOVERY trial demonstrates the reduced 28-d mortality among hospitalized patients with COVID-19 using dexamethasone compared to the usual standard of care,along with other investigators,such as Ahmed and Hassan[85].The benefit of dexamethasone was seen only among participants receiving either oxygen alone or invasive mechanical ventilation at randomization but not among those receiving no respiratory support at enrollment[85].In a systematic review and meta-analysis,Albuquerque et al[86]showed that in comparison to tocilizumab,baricitinib,and sarilumab are associated with high probabilities of similar mortality reductions among hospitalized COVID-19 concurrently treated with CS.As a result of the absence of SARS-CoV-2-specific antiviral medications,the effectiveness of COVID-19 treatments is reduced.Several COVID-19 therapies are now under investigation.However,the majority of them lack specificity,efficacy,and safety[87].Immunotherapy is a ground-breaking medical treatment that manipulates the immune system to fight diseases.Translational research is rapidly progressing,recognized as a significant breakthrough in 2013[88].Among the immunotherapeutic options for treating COVID-19 are Immunoglobulin,CP,antibodies,mAbs(mAbs),NK cells,T cells,TLR,cytokine therapies and immune modulators.展开更多
Along with the rapid development of social networks, social network worms have constituted one of the major internet security problems. The root of worm is the inevitable software vulnerability during the design and i...Along with the rapid development of social networks, social network worms have constituted one of the major internet security problems. The root of worm is the inevitable software vulnerability during the design and implementation process of software. So it is hard to completely avoid worms in the existing software engineering systems. Due to lots of bandwidth consumption, the patch cannot be transmitted simultaneously by the network administrator to all hosts. This paper studies how to prevent the propagation of social network worms through the immunization of key nodes. Unlike existing containment models for worm propagation, a novel immunization strategy is proposed based on network vertex influence. The strategy selects the critical vertices in the whole network. Then the immunization is applied on the selected vertices to achieve the maximal effect of worm containment with minimal cost. Different algorithms are implemented to select vertices. Simulation experiments are presented to analyze and evaluate the performance of different algorithms.展开更多
Karachi, the largest city in Pakistan, having high population growth and a complex health care environment, has highest density of unimmunized (zero dose) and under-immunized children. The main reasons of low immuniza...Karachi, the largest city in Pakistan, having high population growth and a complex health care environment, has highest density of unimmunized (zero dose) and under-immunized children. The main reasons of low immunization coverage in Karachi were lack of governance and accountability in a duplicative and fragmented health management structure, weak and inequitable immunization services, and lack of demand and trust among people for immunization services. The Expanded Programme on Immunization (EPI), Ministry of Health (MOH) in Sindh Province spearheaded a structured and collaborative process to develop strategies for addressing inequity in immunization services towards achieving Universal Immunization Coverage (UIC) in Karachi. The process included a situation analysis with gathering quantitative and qualitative information on the root causes of zero-dose and inequity of the immunization services. The strategies and interventions were developed with multi-layer input and feedback of the stakeholders and partners, and focusing primarily to address gaps in three program areas: governance, leadership and accountability;immunization service delivery;and building demand and trust among the people. The interventions were further prioritized for high-risk areas;identified based on maximum number zero-dose children, presence of large slum areas, measles outbreak and on-going circulation of wild poliovirus. Finally, costing for the Roadmap activities was done through consultation with partners and aligning domestic and external (donor) resources. In this paper, we have highlighted the unique process the Sindh Government undertook in collaboration with the stakeholders and partners to develop strategies and interventions for addressing inequity in urban immunization services in Karachi towards achieving Universal Immunization Coverage (UIC). Similar processes can be adapted, as a potential model, for developing strategies to achieve universal health coverage in the cities of Pakistan and in other countries.展开更多
Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that ...Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.展开更多
While presenting biological characteristics of vaccinia virus and laboratory-acquired infections during related research processes, this paper focuses on benefits and risks of vaccinia virus immunization in relation t...While presenting biological characteristics of vaccinia virus and laboratory-acquired infections during related research processes, this paper focuses on benefits and risks of vaccinia virus immunization in relation to laboratory-acquired infections, describes characteristics and the adaptation of vaccinia virus vaccine, analyses the role vaccinia virus immunization plays in the prevention and control of laboratory-acquired infections, and finally proposes solutions and countermeasures to further promote and implement immune control strategies. The problem related to immune strategy and laboratory- acquired infections which is being raised, analyzed and explored plays an active and instructive role in vaccinia virus related researches and laboratory- acquired infections, and also helps to recommend and develop relevant immune strategy for future vaccine control of such infections.展开更多
We have modified the previously described one-pot peptide synthesis method. The modified method has been successfully applied to the synthesis of TP3. Furthermore, the immune regulatory activity of TP3 has been charac...We have modified the previously described one-pot peptide synthesis method. The modified method has been successfully applied to the synthesis of TP3. Furthermore, the immune regulatory activity of TP3 has been characterized. The results show that the modified one-pot method can be used to synthesize the biological active peptide with the advantages of low cost and high productivity. Moreover, TP3 has a higher immune regulatory activity than TP5.展开更多
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the...Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.展开更多
Elevated serum cholesterol metabolism is associated with a reduced risk of lung cancer.Disrupted cholesterol metabolism is evident in both lung cancer patients and tumor cells.Inhibiting tumor cell cholesterol uptake ...Elevated serum cholesterol metabolism is associated with a reduced risk of lung cancer.Disrupted cholesterol metabolism is evident in both lung cancer patients and tumor cells.Inhibiting tumor cell cholesterol uptake or biosynthesis pathways,through the modulation of receptors and enzymes such as liver X receptor and sterolregulatory element binding protein 2,effectively restrains lung tumor growth.Similarly,promoting cholesterol excretion yields comparable effects.Cholesterol metabolites,including oxysterols and isoprenoids,play a crucial role in regulating cholesterol metabolism within tumor cells,consequently impacting cancer progression.In lung cancer patients,both the cholesterol levels in the tumor microenvironment and within tumor cells significantly influence cell growth,proliferation,and metastasis.The effects of cholesterol metabolism are further mediated by the reprogramming of immune cells such as T cells,B cells,macrophages,myeloid-derived suppressor cells,among others.Ongoing research is investigating drugs targeting cholesterol metabolism for clinical treatments.Statins,targeting the cholesterol biosynthesis pathway,are widely employed in lung cancer treatment,either as standalone agents or in combination with other drugs.Additionally,drugs focusing on cholesterol transportation have shown promise as effective therapies for lung cancer.In this review,we summarized current research regarding the rule of cholesterol metabolism and therapeutic advances in lung cancer.展开更多
Significant developments in cancer treatment have been made since the advent of immune therapies.However,there are still some patientswithmalignant tumors who do not benefit from immunotherapy.Tumors without immunogen...Significant developments in cancer treatment have been made since the advent of immune therapies.However,there are still some patientswithmalignant tumors who do not benefit from immunotherapy.Tumors without immunogenicity are called“cold”tumors which are unresponsive to immunotherapy,and the opposite are“hot”tumors.Immune suppressive cells(ISCs)refer to cells which can inhibit the immune response such as tumor-associated macrophages(TAMs),myeloid-derived suppressor cells(MDSCs),regulatory T(Treg)cells and so on.The more ISCs infiltrated,the weaker the immunogenicity of the tumor,showing the characteristics of“cold”tumor.The dysfunction of ISCs in the tumor microenvironment(TME)may play essential roles in insensitive therapeutic reaction.Previous studies have found that epigeneticmechanisms play an important role in the regulation of ISCs.Regulating ISCs may be a new approach to transforming“cold”tumors into“hot”tumors.Here,we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs.In addition,we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in“cold”tumor.展开更多
Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the ...Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the accumulation of triglycerides in liver cells and involves immune system activation,leading to histological changes,tissue damage,and clinical symptoms.A recent publication by Jiang et al,highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.In this editorial,we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.展开更多
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
基金Supported by the National Natural Science Foundation of China,No.82100883the Research Project of Educational Commission of Jilin Province of China,No.JJKH20231214KJ.
文摘Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes.With the development of immunological technology,many studies have shown that diabetic nephropathy is an immune complex disease,and that most patients have immune dysfunction.However,the immune response associated with diabetic nephropathy and autoimmune kidney disease,or caused by ischemia or infection with acute renal injury,is different,and has a complicated pathological mechanism.In this review,we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism,to provide guidance and advice for early intervention and treatment of diabetic nephropathy.
基金the China Medical Board of New York,Inc.,the United States,Grant No.93-582.
文摘INTRODUCTION At present hepatitis B vaccine immunization is an unique effective measure for controlling hepatitis B.It is important o determine optimal immunization
基金supported by the National Natural Science Foundation of China (No.60774088)the Program for New Century Excellent Talents in University of China (No.NCET-2005-229)the Science and Technology Research Key Project of Education Ministry of China (No.107024)
文摘A novel immunization strategy called the random walk immunization strategy on scale-free networks is proposed. Different from other known immunization strategies, this strategy works as follows: a node is randomly chosen from the network. Starting from this node, randomly walk to one of its neighbor node; if the present node is not immunized, then immunize it and continue the random walk; otherwise go back to the previous node and randomly walk again. This process is repeated until a certain fraction of nodes is immunized. By theoretical analysis and numerical simulations, we found that this strategy is very effective in comparison with the other known immunization strategies.
基金Supported by the European Union-Next Generation EU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation.With these delicate dynamics in mind,immunomodulatory therapies have emerged as a promising avenue for miti-gating the challenges posed by COVID-19.Precision in manipulating immune pathways presents an opportunity to alter the host response,optimizing antiviral defenses while curbing deleterious inflammation.This review article compre-hensively analyzes immunomodulatory interventions in managing COVID-19.We explore diverse approaches to mitigating the hyperactive immune response and its impact,from corticosteroids and non-steroidal drugs to targeted biologics,including anti-viral drugs,cytokine inhibitors,JAK inhibitors,convalescent plasma,monoclonal antibodies(mAbs)to severe acute respiratory syndrome coronavirus 2,cell-based therapies(i.e.,CAR T,etc.).By summarizing the current evidence,we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.CS Glucocorticoids are among the most widely prescribed drugs with their immune-suppressive and anti-inflammatory effect[84].The current guidelines for the treatment of COVID-19 recommend against the use of dexamethasone or other systemic CS in non-hospitalized patients in the absence of another indication[70].The RECOVERY trial demonstrates the reduced 28-d mortality among hospitalized patients with COVID-19 using dexamethasone compared to the usual standard of care,along with other investigators,such as Ahmed and Hassan[85].The benefit of dexamethasone was seen only among participants receiving either oxygen alone or invasive mechanical ventilation at randomization but not among those receiving no respiratory support at enrollment[85].In a systematic review and meta-analysis,Albuquerque et al[86]showed that in comparison to tocilizumab,baricitinib,and sarilumab are associated with high probabilities of similar mortality reductions among hospitalized COVID-19 concurrently treated with CS.As a result of the absence of SARS-CoV-2-specific antiviral medications,the effectiveness of COVID-19 treatments is reduced.Several COVID-19 therapies are now under investigation.However,the majority of them lack specificity,efficacy,and safety[87].Immunotherapy is a ground-breaking medical treatment that manipulates the immune system to fight diseases.Translational research is rapidly progressing,recognized as a significant breakthrough in 2013[88].Among the immunotherapeutic options for treating COVID-19 are Immunoglobulin,CP,antibodies,mAbs(mAbs),NK cells,T cells,TLR,cytokine therapies and immune modulators.
基金supported by Fundamental Research Funds of the Central Universities under Grant no. N120317001 and N100704001Program for New Century Excellent Talents in University (NCET13-0113)+1 种基金Natural Science Foundation of Liaoning Province of China under Grant no. 201202059Program for Liaoning Excellent Talents in University under LR2013011
文摘Along with the rapid development of social networks, social network worms have constituted one of the major internet security problems. The root of worm is the inevitable software vulnerability during the design and implementation process of software. So it is hard to completely avoid worms in the existing software engineering systems. Due to lots of bandwidth consumption, the patch cannot be transmitted simultaneously by the network administrator to all hosts. This paper studies how to prevent the propagation of social network worms through the immunization of key nodes. Unlike existing containment models for worm propagation, a novel immunization strategy is proposed based on network vertex influence. The strategy selects the critical vertices in the whole network. Then the immunization is applied on the selected vertices to achieve the maximal effect of worm containment with minimal cost. Different algorithms are implemented to select vertices. Simulation experiments are presented to analyze and evaluate the performance of different algorithms.
文摘Karachi, the largest city in Pakistan, having high population growth and a complex health care environment, has highest density of unimmunized (zero dose) and under-immunized children. The main reasons of low immunization coverage in Karachi were lack of governance and accountability in a duplicative and fragmented health management structure, weak and inequitable immunization services, and lack of demand and trust among people for immunization services. The Expanded Programme on Immunization (EPI), Ministry of Health (MOH) in Sindh Province spearheaded a structured and collaborative process to develop strategies for addressing inequity in immunization services towards achieving Universal Immunization Coverage (UIC) in Karachi. The process included a situation analysis with gathering quantitative and qualitative information on the root causes of zero-dose and inequity of the immunization services. The strategies and interventions were developed with multi-layer input and feedback of the stakeholders and partners, and focusing primarily to address gaps in three program areas: governance, leadership and accountability;immunization service delivery;and building demand and trust among the people. The interventions were further prioritized for high-risk areas;identified based on maximum number zero-dose children, presence of large slum areas, measles outbreak and on-going circulation of wild poliovirus. Finally, costing for the Roadmap activities was done through consultation with partners and aligning domestic and external (donor) resources. In this paper, we have highlighted the unique process the Sindh Government undertook in collaboration with the stakeholders and partners to develop strategies and interventions for addressing inequity in urban immunization services in Karachi towards achieving Universal Immunization Coverage (UIC). Similar processes can be adapted, as a potential model, for developing strategies to achieve universal health coverage in the cities of Pakistan and in other countries.
文摘Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.
基金supported by the National Health and Family Planning Commission(201302006)
文摘While presenting biological characteristics of vaccinia virus and laboratory-acquired infections during related research processes, this paper focuses on benefits and risks of vaccinia virus immunization in relation to laboratory-acquired infections, describes characteristics and the adaptation of vaccinia virus vaccine, analyses the role vaccinia virus immunization plays in the prevention and control of laboratory-acquired infections, and finally proposes solutions and countermeasures to further promote and implement immune control strategies. The problem related to immune strategy and laboratory- acquired infections which is being raised, analyzed and explored plays an active and instructive role in vaccinia virus related researches and laboratory- acquired infections, and also helps to recommend and develop relevant immune strategy for future vaccine control of such infections.
文摘We have modified the previously described one-pot peptide synthesis method. The modified method has been successfully applied to the synthesis of TP3. Furthermore, the immune regulatory activity of TP3 has been characterized. The results show that the modified one-pot method can be used to synthesize the biological active peptide with the advantages of low cost and high productivity. Moreover, TP3 has a higher immune regulatory activity than TP5.
基金National Natural Science Foundation of China(No.61105114)the Key Technology R&D Program of Jiangsu Province,China(No.BE2010189)
文摘Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.
文摘Elevated serum cholesterol metabolism is associated with a reduced risk of lung cancer.Disrupted cholesterol metabolism is evident in both lung cancer patients and tumor cells.Inhibiting tumor cell cholesterol uptake or biosynthesis pathways,through the modulation of receptors and enzymes such as liver X receptor and sterolregulatory element binding protein 2,effectively restrains lung tumor growth.Similarly,promoting cholesterol excretion yields comparable effects.Cholesterol metabolites,including oxysterols and isoprenoids,play a crucial role in regulating cholesterol metabolism within tumor cells,consequently impacting cancer progression.In lung cancer patients,both the cholesterol levels in the tumor microenvironment and within tumor cells significantly influence cell growth,proliferation,and metastasis.The effects of cholesterol metabolism are further mediated by the reprogramming of immune cells such as T cells,B cells,macrophages,myeloid-derived suppressor cells,among others.Ongoing research is investigating drugs targeting cholesterol metabolism for clinical treatments.Statins,targeting the cholesterol biosynthesis pathway,are widely employed in lung cancer treatment,either as standalone agents or in combination with other drugs.Additionally,drugs focusing on cholesterol transportation have shown promise as effective therapies for lung cancer.In this review,we summarized current research regarding the rule of cholesterol metabolism and therapeutic advances in lung cancer.
基金National Natural Science Foundation of China,Grant/Award Numbers:82373275,81974384,82173342,82203015China Postdoctoral Science Foundation,Grant/Award Number:2023JJ40942+3 种基金Nature Science Foundation of Hunan Province,Grant/Award Numbers:2021JJ3109,2021JJ31048,2023JJ40942Nature Science Foundation of Changsha,Grant/Award Number:73201CSCO Cancer Research Foundation,Grant/Award Numbers:Y-HR2019-0182,Y-2019Genecast-043the Key Research and Development Program of Hainan Province,Grant/Award Numbers:ZDYF2020228,ZDYF2020125。
文摘Significant developments in cancer treatment have been made since the advent of immune therapies.However,there are still some patientswithmalignant tumors who do not benefit from immunotherapy.Tumors without immunogenicity are called“cold”tumors which are unresponsive to immunotherapy,and the opposite are“hot”tumors.Immune suppressive cells(ISCs)refer to cells which can inhibit the immune response such as tumor-associated macrophages(TAMs),myeloid-derived suppressor cells(MDSCs),regulatory T(Treg)cells and so on.The more ISCs infiltrated,the weaker the immunogenicity of the tumor,showing the characteristics of“cold”tumor.The dysfunction of ISCs in the tumor microenvironment(TME)may play essential roles in insensitive therapeutic reaction.Previous studies have found that epigeneticmechanisms play an important role in the regulation of ISCs.Regulating ISCs may be a new approach to transforming“cold”tumors into“hot”tumors.Here,we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs.In addition,we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in“cold”tumor.
基金Supported by Special Fund of the Beijing Clinical Key Specialty Construction Program,No.BJZKBC0011Clinical Key Project of Peking University Third Hospital,No.BYSYZD2023049.
文摘Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the accumulation of triglycerides in liver cells and involves immune system activation,leading to histological changes,tissue damage,and clinical symptoms.A recent publication by Jiang et al,highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.In this editorial,we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.