期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers 被引量:1
1
作者 Ramon Carbó-Dorca 《Applied Mathematics》 2022年第6期538-543,共6页
A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the preci... A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers. 展开更多
关键词 Mersenne Numbers Recursive Generation of Natural Numbers Mersenne Natural Number intervals Counting the Number of Prime Numbers in Mersenne Natural intervals Correlation between Prime Number Set Cardinalities and Mersenne Numbers Extended Twin Prime Number Conjecture
下载PDF
The Greatest Prime Factor of the Integers in a Short Interval (Ⅳ) 被引量:1
2
作者 Jia Chaohua Institute of Mathematics Academia Sinica Beijing, 100080 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第4期433-445,共13页
Let P(x) denote the greatest prime factor of ∏<sub>x【n≤x+x<sup>1/2</sup></sub>n. In this paper, we shall prove that P(x)】x<sup>0.728</sup>holds true for sufficiently large x.
关键词 MATH In The Greatest Prime Factor of the Integers in a Short Interval
原文传递
Selberg's Integral for Ramanujan Automorphic Representation
3
作者 Qing Feng SUN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第7期1449-1454,共6页
Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L... Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L(s, π△) under GRH. Our results give the information for the number of primes in short intervals attached to Ramanujan automorphic representation. 展开更多
关键词 Automorphic L-functions Selberg's integral primes in short intervals
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部